Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 7: 603358, 2020.
Article in English | MEDLINE | ID: mdl-33585594

ABSTRACT

Optimal fluid therapy protocols in neonatal calves and adult cattle are based on consideration of signalment, history, and physical examination findings, and individually tailored whenever laboratory analysis is available. Measurement of the magnitude of eye recession, duration of skin tenting in the lateral neck region, and urine specific gravity by refractometry provide the best estimates of hydration status in calves and cattle. Intravenous and oral electrolyte solutions (OES) are frequently administered to critically ill calves and adult cattle. Application of physicochemical principles indicates that 0.9% NaCl, Ringer's solution, and 5% dextrose are equally acidifying, lactated Ringer's and acetated Ringer's solution are neutral to mildly acidifying, and 1.3-1.4% sodium bicarbonate solutions are strongly alkalinizing in cattle. Four different crystalloid solutions are recommended for intravenous fluid therapy in dehydrated or septic calves and dehydrated adult cattle: (1) lactated Ringer's solution and acetated Ringer's solution for dehydrated calves, although neither solution is optimized for administration to neonatal calves or adult cattle; (2) isotonic (1.3%) or hypertonic (5.0 or 8.4%) solutions of sodium bicarbonate for the treatment of calves with diarrhea and severe strong ion (metabolic) acidosis and hyponatremia, and adult cattle with acute ruminal acidosis; (3) Ringer's solution for the treatment of metabolic alkalosis in dehydrated adult cattle, particularly lactating dairy cattle; and (4) hypertonic NaCl solutions (7.2%) and an oral electrolyte solution or water load for the rapid resuscitation of dehydrated neonatal calves and adult cattle. Much progress has been made since the 1970's in identifying important attributes of an OES for diarrheic calves. Important components of an OES for neonatal calves are osmolality, sodium concentration, the effective SID that reflects the concentration of alkalinizing agents, and the energy content. The last three factors are intimately tied to the OES osmolality and the abomasal emptying rate, and therefore the rate of sodium delivery to the small intestine and ultimately the rate of resuscitation. An important need in fluid and electrolyte therapy for adult ruminants is formulation of a practical, effective, and inexpensive OES.

2.
Vet Clin North Am Food Anim Pract ; 30(2): 409-27, vi, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24980729

ABSTRACT

Early and aggressive fluid therapy is critical in correcting the metabolic complications associated with calf diarrhea. Oral electrolyte therapy can be used with success in calves, but careful consideration should be given to the type of oral electrolyte used. Electrolyte solutions with high osmolalities can significantly slow abomasal emptying and can be a risk factor for abomasal bloat in calves. Milk should not be withheld from calves with diarrhea for more than 12 to 24 hours. Hypertonic saline and hypertonic sodium bicarbonate can be used effectively for intravenous fluid therapy on farms when intravenous catheterization is not possible.


Subject(s)
Cattle Diseases/therapy , Diarrhea/veterinary , Fluid Therapy/veterinary , Animals , Cattle , Diarrhea/therapy
3.
Vet Clin North Am Food Anim Pract ; 25(1): 73-99, vi, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19174284

ABSTRACT

Severely dehydrated calves that are unable to suckle need intravenous fluids for effective resuscitation. Intravenous fluid therapy is also indicated for sick calves without obvious dehydration, such as calves with strong ion acidosis, ruminal acidosis (rumen drinkers), severe pneumonia, septicemia, or hypothermia. This article presents an updated overview of intravenous fluid therapy for calves, recent insights into the development of metabolic acidosis in young calves resulting from accumulation of D-lactate, a simplified algorithm for intravenous fluid therapy, and a procedure for ear vein catheterization under field conditions.


Subject(s)
Cattle Diseases/therapy , Dehydration/veterinary , Diarrhea/veterinary , Fluid Therapy/veterinary , Water-Electrolyte Imbalance/veterinary , Animals , Animals, Newborn , Cattle , Cattle Diseases/mortality , Cattle Diseases/prevention & control , Dehydration/therapy , Diarrhea/mortality , Diarrhea/prevention & control , Diarrhea/therapy , Female , Fluid Therapy/instrumentation , Fluid Therapy/methods , Infusions, Intravenous/veterinary , Male , Practice Guidelines as Topic , Treatment Outcome , Water-Electrolyte Imbalance/therapy
4.
J Vet Intern Med ; 19(4): 581-9, 2005.
Article in English | MEDLINE | ID: mdl-16095178

ABSTRACT

Acid-base abnormalities are frequently present in sick calves. The mechanism for an acid-base disturbance can be characterized using the strong ion approach, which requires accurate values for the total concentration of plasma nonvolatile buffers (A(tot)) and the effective dissociation constant for plasma weak acids (K(a)). The aims of this study were to experimentally determine A(tot), K(a), and net protein charge values for calf plasma and to apply these values quantitatively to data from sick calves to determine underlying mechanisms for the observed acid-base disturbance. Plasma was harvested from 9 healthy Holstein-Friesian calves and concentrations of quantitatively important strong ions (Na+, K+, Ca2+, Mg2+, Cl-, L-lactate) and nonvolatile buffer ions (total protein, albumin, phosphate) were determined. Plasma was tonometered with CO2 at 37 degrees C, and plasma P(CO2) and pH measured over a range of 15-159 mm Hg and 6.93-7.79, respectively. Strong ion difference (SID) was calculated from the measured strong ion concentrations, and nonlinear regression was used to estimate values for A(tot) and K(a) from the measured pH and P(CO2) and calculated SID. The estimated A(tot) and K(a) values were then validated using data from 2 in vivo studies. Mean (+/- SD) values for calf plasma were A(tot) = 0.343 mmol/g of total protein or 0.622 mmol/g of albumin; K(a) = (0.84 +/- 0.41) x 10(-7); pK(a) = 7.08. The net protein charge of calf plasma was 10.5 mEq/L, equivalent to 0.19 mEq/g of total protein or 0.34 mEq/g of albumin. Application of the strong ion approach to acid-base disturbances in 231 sick calves with or without diarrhea indicated that acidemia was due predominantly to a strong ion acidosis in response to hyponatremia accompanied by normochloremia or hyperchloremia and the presence of unidentified strong anions. These results confirm current recommendations that treatment of acidemia in sick calves with or without diarrhea should focus on intravenous or PO administration of a fluid containing sodium and a high effective SID.


Subject(s)
Acid-Base Imbalance/veterinary , Cattle Diseases/metabolism , Diarrhea/veterinary , Ions/blood , Acid-Base Imbalance/metabolism , Acids/blood , Animals , Blood Chemical Analysis , Blood Proteins/chemistry , Cattle , Cattle Diseases/blood , Diarrhea/metabolism , Hydrogen-Ion Concentration , Species Specificity
5.
J Vet Intern Med ; 19(2): 240-51, 2005.
Article in English | MEDLINE | ID: mdl-15822570

ABSTRACT

The objectives of this study were to determine the effects of hyperosmotic sodium bicarbonate (HSB) administration on arterial and cerebrospinal fluid (CSF) acid-base balance and cardiovascular function in calves with experimentally induced respiratory and strong ion (metabolic) acidosis. Ten healthy male Holstein calves (30-47 kg body weight) were instrumented under halothane anesthesia to permit cardiovascular monitoring and collection of blood samples and CSE Respiratory acidosis was induced by allowing the calves to spontaneously ventilate, and strong ion acidosis was subsequently induced by i.v. administration of L-lactic acid. Calves were then randomly assigned to receive either HSB (8.4% NaHCO3; 5 ml/kg over 5 minutes, i.v.; n=5) or no treatment (controls, n=5) and monitored for 1 hour. Mixed respiratory and strong ion acidosis was accompanied by increased heart rate, cardiac index, mean arterial pressure, cardiac contractility (maximal rate of change of left ventricular pressure), and mean pulmonary artery pressure. Rapid administration of HSB immediately corrected the strong ion acidosis, transiently increased arterial partial pressure of carbon dioxide (P(CO2)), and expanded the plasma volume. The transient increase in arterial P(CO2) did not alter CSF P(CO2) or induce paradoxical CSF acidosis. Compared to untreated control calves, HSB-treated calves had higher cardiac index and contractility and a faster rate of left ventricular relaxation for 1 hour after treatment, indicating that HSB administration improved myocardial systolic function. We conclude that rapid i.v. administration of HSB provided an effective and safe method for treating strong ion acidosis in normovolemic halothane-anesthetized calves with experimentally induced respiratory and strong ion acidosis. Fear of inducing paradoxical CSF acidosis is not a valid reason for withholding HSB administration in calves with mixed respiratory and strong ion acidosis.


Subject(s)
Acid-Base Equilibrium/drug effects , Acidosis/veterinary , Cattle Diseases/drug therapy , Sodium Bicarbonate/administration & dosage , Acidosis/blood , Acidosis/cerebrospinal fluid , Acidosis/drug therapy , Acidosis, Respiratory/veterinary , Animals , Blood Gas Analysis , Cattle , Cattle Diseases/blood , Cattle Diseases/cerebrospinal fluid , Hydrogen-Ion Concentration , Hypertonic Solutions/administration & dosage , Infusions, Intravenous/veterinary , Male , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...