Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
NAR Cancer ; 6(1): zcae003, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38288445

ABSTRACT

High-grade serous ovarian cancer (HGSC) is a lethal malignancy with elevated replication stress (RS) levels and defective RS and RS-associated DNA damage responses. Here we demonstrate that the bromodomain-containing protein BRD1 is a RS suppressing protein that forms a replication origin regulatory complex with the histone acetyltransferase HBO1, the BRCA1 tumor suppressor, and BARD1, ORigin FIring Under Stress (ORFIUS). BRD1 and HBO1 promote eventual origin firing by supporting localization of the origin licensing protein ORC2 at origins. In the absence of BRD1 and/or HBO1, both origin firing and nuclei with ORC2 foci are reduced. BRCA1 regulates BRD1, HBO1, and ORC2 localization at replication origins. In the absence of BRCA1, both origin firing and nuclei with BRD1, HBO1, and ORC2 foci are increased. In normal and non-HGSC ovarian cancer cells, the ORFIUS complex responds to ATR and CDC7 origin regulatory signaling and disengages from origins during RS. In BRCA1-mutant and sporadic HGSC cells, BRD1, HBO1, and ORC2 remain associated with replication origins, and unresponsive to RS, DNA damage, or origin regulatory kinase inhibition. ORFIUS complex dysregulation may promote HGSC cell survival by allowing for upregulated origin firing and cell cycle progression despite accumulating DNA damage, and may be a RS target.

2.
Article in English | MEDLINE | ID: mdl-38052499

ABSTRACT

Research on the genomic architecture of speciation has increasingly revealed the importance of structural variants (SVs) that affect the presence, abundance, position, and/or direction of a nucleotide sequence. SVs include large chromosomal rearrangements such as fusion/fissions and inversions and translocations, as well as smaller variants such as duplications, insertions, and deletions (CNVs). Although we have ample evidence that SVs play a key role in speciation, the underlying mechanisms differ depending on the type and length of the SV, as well as the ecological, demographic, and historical context. We review predictions and empirical evidence for classic processes such as underdominance due to meiotic aberrations and the coupling effect of recombination suppression before exploring how recent sequencing methodologies illuminate the prevalence and diversity of SVs. We discuss specific properties of SVs and their impact throughout the genome, highlighting that multiple processes are at play, and possibly interacting, in the relationship between SVs and speciation.


Subject(s)
Genome , Genomics
3.
J Evol Biol ; 36(12): 1761-1782, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37942504

ABSTRACT

Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.


Subject(s)
Chromosome Inversion , Chromosomes , Humans , Heterozygote , Evolution, Molecular
4.
Proc Biol Sci ; 290(2008): 20231494, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37817592

ABSTRACT

Supergenes, tightly linked sets of alleles, offer some of the most spectacular examples of polymorphism persisting under long-term balancing selection. However, we still do not understand their evolution and persistence, especially in the face of accumulation of deleterious elements. Here, we show that an overdominant supergene in seaweed flies, Coelopa frigida, modulates male traits, potentially facilitating disassortative mating and promoting intraspecific polymorphism. Across two continents, the Cf-Inv(1) supergene strongly affected the composition of male cuticular hydrocarbons (CHCs) but only weakly affected CHC composition in females. Using gas chromatography-electroantennographic detection, we show that females can sense male CHCs and that there may be differential perception between genotypes. Combining our phenotypic results with RNA-seq data, we show that candidate genes for CHC biosynthesis primarily show differential expression for Cf-Inv(1) in males but not females. Conversely, candidate genes for odorant detection were differentially expressed in both sexes but showed high levels of divergence between supergene haplotypes. We suggest that the reduced recombination between supergene haplotypes may have led to rapid divergence in mate preferences as well as increasing linkage between male traits, and overdominant loci. Together this probably helped to maintain the polymorphism despite deleterious effects in homozygotes.


Subject(s)
Diptera , Animals , Male , Female , Diptera/genetics , Polymorphism, Genetic , Genotype , Phenotype , Hydrocarbons/metabolism , Perception
5.
Environ Microbiol ; 25(9): 1659-1673, 2023 09.
Article in English | MEDLINE | ID: mdl-37032322

ABSTRACT

Sandy beaches are biogeochemical hotspots that bridge marine and terrestrial ecosystems via the transfer of organic matter, such as seaweed (termed wrack). A keystone of this unique ecosystem is the microbial community, which helps to degrade wrack and re-mineralize nutrients. However, little is known about this community. Here, we characterize the wrackbed microbiome as well as the microbiome of a primary consumer, the seaweed fly Coelopa frigida, and examine how they change along one of the most studied ecological gradients in the world, the transition from the marine North Sea to the brackish Baltic Sea. We found that polysaccharide degraders dominated both microbiomes, but there were still consistent differences between wrackbed and fly samples. Furthermore, we observed a shift in both microbial communities and functionality between the North and Baltic Sea driven by changes in the frequency of different groups of known polysaccharide degraders. We hypothesize that microbes were selected for their abilities to degrade different polysaccharides corresponding to a shift in polysaccharide content in the different seaweed communities. Our results reveal the complexities of both the wrackbed microbial community, with different groups specialized to different roles, and the cascading trophic consequences of shifts in the near shore algal community.


Subject(s)
Ecosystem , Microbiota , North Sea , Phylogeography , Microbiota/genetics , Baltic States
6.
Curr Biol ; 32(20): 4360-4371.e6, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36087578

ABSTRACT

Supergenes govern multi-trait-balanced polymorphisms in a wide range of systems; however, our understanding of their origins and evolution remains incomplete. The reciprocal placement of stigmas and anthers in pin and thrum floral morphs of distylous species constitutes an iconic example of a balanced polymorphism governed by a supergene, the distyly S-locus. Recent studies have shown that the Primula and Turnera distyly supergenes are both hemizygous in thrums, but it remains unknown whether hemizygosity is pervasive among distyly S-loci. As hemizygosity has major consequences for supergene evolution and loss, clarifying whether this genetic architecture is shared among distylous species is critical. Here, we have characterized the genetic architecture and evolution of the distyly supergene in Linum by generating a chromosome-level genome assembly of Linum tenue, followed by the identification of the S-locus using population genomic data. We show that hemizygosity and thrum-specific expression of S-linked genes, including a pistil-expressed candidate gene for style length, are major features of the Linum S-locus. Structural variation is likely instrumental for recombination suppression, and although the non-recombining dominant haplotype has accumulated transposable elements, S-linked genes are not under relaxed purifying selection. Our findings reveal remarkable convergence in the genetic architecture and evolution of independently derived distyly supergenes, provide a counterexample to classic inversion-based supergenes, and shed new light on the origin and maintenance of an iconic floral polymorphism.


Subject(s)
Flax , Flax/genetics , DNA Transposable Elements , Flowers/genetics , Genomics , Genetic Loci , Evolution, Molecular
7.
Biol Rev Camb Philos Soc ; 97(6): 2127-2161, 2022 12.
Article in English | MEDLINE | ID: mdl-35950352

ABSTRACT

Sandy beaches are iconic interfaces that functionally link the ocean with the land via the flow of organic matter from the sea. These cross-ecosystem fluxes often comprise uprooted seagrass and dislodged macroalgae that can form substantial accumulations of detritus, termed 'wrack', on sandy beaches. In addition, the tissue of the carcasses of marine animals that regularly wash up on beaches form a rich food source ('carrion') for a diversity of scavenging animals. Here, we provide a global review of how wrack and carrion provide spatial subsidies that shape the structure and functioning of sandy-beach ecosystems (sandy beaches and adjacent surf zones), which typically have little in situ primary production. We also examine the spatial scaling of the influence of these processes across the broader land- and seascape, and identify key gaps in our knowledge to guide future research directions and priorities. Large quantities of detrital kelp and seagrass can flow into sandy-beach ecosystems, where microbial decomposers and animals process it. The rates of wrack supply and its retention are influenced by the oceanographic processes that transport it, the geomorphology and landscape context of the recipient beaches, and the condition, life history and morphological characteristics of the macrophyte taxa that are the ultimate source of wrack. When retained in beach ecosystems, wrack often creates hotspots of microbial metabolism, secondary productivity, biodiversity, and nutrient remineralization. Nutrients are produced during wrack breakdown, and these can return to coastal waters in surface flows (swash) and aquifers discharging into the subtidal surf. Beach-cast kelp often plays a key trophic role, being an abundant and preferred food source for mobile, semi-aquatic invertebrates that channel imported algal matter to predatory invertebrates, fish, and birds. The role of beach-cast marine carrion is likely to be underestimated, as it can be consumed rapidly by highly mobile scavengers (e.g. foxes, coyotes, raptors, vultures). These consumers become important vectors in transferring marine productivity inland, thereby linking marine and terrestrial ecosystems. Whilst deposits of organic matter on sandy-beach ecosystems underpin a range of ecosystem functions and services, they can be at variance with aesthetic perceptions resulting in widespread activities, such as 'beach cleaning and grooming'. This practice diminishes the energetic base of food webs, intertidal fauna, and biodiversity. Global declines in seagrass beds and kelp forests (linked to global warming) are predicted to cause substantial reductions in the amounts of marine organic matter reaching many beach ecosystems, likely causing flow-on effects for food webs and biodiversity. Similarly, future sea-level rise and increased storm frequency are likely to alter profoundly the physical attributes of beaches, which in turn can change the rates at which beaches retain and process the influxes of wrack and animal carcasses. Conservation of the multi-faceted ecosystem services that sandy beaches provide will increasingly need to encompass a greater societal appreciation and the safeguarding of ecological functions reliant on beach-cast organic matter on innumerable ocean shores worldwide.


Subject(s)
Ecosystem , Invertebrates , Animals , Food Chain , Biodiversity , Birds , Fishes
8.
Philos Trans R Soc Lond B Biol Sci ; 377(1856): 20210199, 2022 08.
Article in English | MEDLINE | ID: mdl-35694750

ABSTRACT

Supergenes offer spectacular examples of long-term balancing selection in nature, but their origin and maintenance remain a mystery. Reduced recombination between arrangements, a critical aspect of many supergenes, protects adaptive multi-trait phenotypes but can lead to mutation accumulation. Mutation accumulation can stabilize the system through the emergence of associative overdominance (AOD), destabilize the system, or lead to new evolutionary outcomes. One outcome is the formation of maladaptive balanced lethal systems, where only heterozygotes remain viable and reproduce. We investigated the conditions under which these different outcomes occur, assuming a scenario of introgression after divergence. We found that AOD aided the invasion of a new supergene arrangement and the establishment of a polymorphism. However, this polymorphism was easily destabilized by further mutation accumulation, which was often asymmetric, disrupting the quasi-equilibrium state. Mechanisms that accelerated degeneration tended to amplify asymmetric mutation accumulation between the supergene arrangements and vice-versa. As the evolution of balanced lethal systems requires symmetric degeneration of both arrangements, this leaves only restricted conditions for their evolution, namely small population sizes and low rates of gene conversion. The dichotomy between the persistence of polymorphism and degeneration of supergene arrangements likely underlies the rarity of balanced lethal systems in nature. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.


Subject(s)
Mutation Accumulation , Polymorphism, Genetic , Phenotype
9.
Philos Trans R Soc Lond B Biol Sci ; 377(1856): 20210192, 2022 08.
Article in English | MEDLINE | ID: mdl-35694757

ABSTRACT

Supergenes are tightly linked sets of loci that are inherited together and control complex phenotypes. While classical supergenes-governing traits such as wing patterns in Heliconius butterflies or heterostyly in Primula-have been studied since the Modern Synthesis, we still understand very little about how they evolve and persist in nature. The genetic architecture of supergenes is a critical factor affecting their evolutionary fate, as it can change key parameters such as recombination rate and effective population size, potentially redirecting molecular evolution of the supergene in addition to the surrounding genomic region. To understand supergene evolution, we must link genomic architecture with evolutionary patterns and processes. This is now becoming possible with recent advances in sequencing technology and powerful forward computer simulations. The present theme issue brings together theoretical and empirical papers, as well as opinion and synthesis papers, which showcase the architectural diversity of supergenes and connect this to critical processes in supergene evolution, such as polymorphism maintenance and mutation accumulation. Here, we summarize those insights to highlight new ideas and methods that illuminate the path forward for the study of supergenes in nature. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.


Subject(s)
Butterflies , Animals , Butterflies/genetics , Evolution, Molecular , Genes, Insect , Genomics , Wings, Animal
10.
Evol Lett ; 5(6): 607-624, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34917400

ABSTRACT

Inversions often underlie complex adaptive traits, but the genic targets inside them are largely unknown. Gene expression profiling provides a powerful way to link inversions with their phenotypic consequences. We examined the effects of the Cf-Inv(1) inversion in the seaweed fly Coelopa frigida on gene expression variation across sexes and life stages. Our analyses revealed that Cf-Inv(1) shapes global expression patterns, most likely via linked variation, but the extent of this effect is variable, with much stronger effects in adults than larvae. Furthermore, within adults, both common as well as sex-specific patterns were found. The vast majority of these differentially expressed genes mapped to Cf-Inv(1). However, genes that were differentially expressed in a single context (i.e., in males, females, or larvae) were more likely to be located outside of Cf-Inv(1). By combining our findings with genomic scans for environmentally associated SNPs, we were able to pinpoint candidate variants in the inversion that may underlie mechanistic pathways that determine phenotypes. Together the results of this study, combined with previous findings, support the notion that the polymorphic Cf-Inv(1) inversion in this species is a major factor shaping both coding and regulatory variation resulting in highly complex adaptive effects.

11.
Mol Ecol ; 30(12): 2710-2723, 2021 06.
Article in English | MEDLINE | ID: mdl-33955064

ABSTRACT

A key step in understanding the genetic basis of different evolutionary outcomes (e.g., adaptation) is to determine the roles played by different mutation types (e.g., SNPs, translocations and inversions). To do this we must simultaneously consider different mutation types in an evolutionary framework. Here, we propose a research framework that directly utilizes the most important characteristics of mutations, their population genetic effects, to determine their relative evolutionary significance in a given scenario. We review known population genetic effects of different mutation types and show how these may be connected to different evolutionary outcomes. We provide examples of how to implement this framework and pinpoint areas where more data, theory and synthesis are needed. Linking experimental and theoretical approaches to examine different mutation types simultaneously is a critical step towards understanding their evolutionary significance.


Subject(s)
Biological Evolution , Genetics, Population , Models, Genetic , Adaptation, Physiological , Chromosome Inversion , Mutation , Mutation Rate , Population Density , Selection, Genetic
12.
Mol Biol Evol ; 38(9): 3953-3971, 2021 08 23.
Article in English | MEDLINE | ID: mdl-33963409

ABSTRACT

Across a species range, multiple sources of environmental heterogeneity, at both small and large scales, create complex landscapes of selection, which may challenge adaptation, particularly when gene flow is high. One key to multidimensional adaptation may reside in the heterogeneity of recombination along the genome. Structural variants, like chromosomal inversions, reduce recombination, increasing linkage disequilibrium among loci at a potentially massive scale. In this study, we examined how chromosomal inversions shape genetic variation across a species range and ask how their contribution to adaptation in the face of gene flow varies across geographic scales. We sampled the seaweed fly Coelopa frigida along a bioclimatic gradient stretching across 10° of latitude, a salinity gradient, and a range of heterogeneous, patchy habitats. We generated a chromosome-level genome assembly to analyze 1,446 low-coverage whole genomes collected along those gradients. We found several large nonrecombining genomic regions, including putative inversions. In contrast to the collinear regions, inversions and low-recombining regions differentiated populations more strongly, either along an ecogeographic cline or at a fine-grained scale. These genomic regions were associated with environmental factors and adaptive phenotypes, albeit with contrasting patterns. Altogether, our results highlight the importance of recombination in shaping adaptation to environmental heterogeneity at local and large scales.


Subject(s)
Seaweed , Adaptation, Physiological/genetics , Chromosome Inversion , Gene Flow , Genetic Variation , Humans , Linkage Disequilibrium
13.
PLoS Genet ; 17(3): e1009411, 2021 03.
Article in English | MEDLINE | ID: mdl-33661924

ABSTRACT

Chromosomal inversions contribute widely to adaptation and speciation, yet they present a unique evolutionary puzzle as both their allelic content and frequency evolve in a feedback loop. In this simulation study, we quantified the role of the allelic content in determining the long-term fate of the inversion. Recessive deleterious mutations accumulated on both arrangements with most of them being private to a given arrangement. This led to increasing overdominance, allowing for the maintenance of the inversion polymorphism and generating strong non-adaptive divergence between arrangements. The accumulation of mutations was mitigated by gene conversion but nevertheless led to the fitness decline of at least one homokaryotype under all considered conditions. Surprisingly, this fitness degradation could be permanently halted by the branching of an arrangement into multiple highly divergent haplotypes. Our results highlight the dynamic features of inversions by showing how the non-adaptive evolution of allelic content can play a major role in the fate of the inversion.


Subject(s)
Chromosome Inversion , Mutation , Evolution, Molecular , Gene Conversion , Gene Rearrangement , Haplotypes , Models, Genetic
14.
Genome Biol Evol ; 13(5)2021 05 07.
Article in English | MEDLINE | ID: mdl-33739390

ABSTRACT

Supergenes are genomic regions containing sets of tightly linked loci that control multi-trait phenotypic polymorphisms under balancing selection. Recent advances in genomics have uncovered significant variation in both the genomic architecture as well as the mode of origin of supergenes across diverse organismal systems. Although the role of genomic architecture for the origin of supergenes has been much discussed, differences in the genomic architecture also subsequently affect the evolutionary trajectory of supergenes and the rate of degeneration of supergene haplotypes. In this review, we synthesize recent genomic work and historical models of supergene evolution, highlighting how the genomic architecture of supergenes affects their evolutionary fate. We discuss how recent findings on classic supergenes involved in governing ant colony social form, mimicry in butterflies, and heterostyly in flowering plants relate to theoretical expectations. Furthermore, we use forward simulations to demonstrate that differences in genomic architecture affect the degeneration of supergenes. Finally, we discuss implications of the evolution of supergene haplotypes for the long-term fate of balanced polymorphisms governed by supergenes.


Subject(s)
Evolution, Molecular , Insecta/genetics , Animals , Biological Evolution , Biological Mimicry , Genetic Structures , Haplotypes , Polymorphism, Genetic , Recombination, Genetic
15.
J Evol Biol ; 34(1): 157-174, 2021 01.
Article in English | MEDLINE | ID: mdl-33118222

ABSTRACT

Adaptation to different environments can directly and indirectly generate reproductive isolation between species. Bluefin killifish (Lucania goodei) and rainwater killifish (L. parva) are sister species that have diverged across a salinity gradient and are reproductively isolated by habitat, behavioural, extrinsic and intrinsic post-zygotic isolation. We asked if salinity adaptation contributes indirectly to other forms of reproductive isolation via linked selection and hypothesized that low recombination regions, such as sex chromosomes or chromosomal rearrangements, might facilitate this process. We conducted QTL mapping in backcrosses between L. parva and L. goodei to explore the genetic architecture of salinity tolerance, behavioural isolation and intrinsic isolation. We mapped traits relative to a chromosome that has undergone a centric fusion in L. parva (relative to L. goodei). We found that the sex locus appears to be male determining (XX-XY), was located on the fused chromosome and was implicated in intrinsic isolation. QTL associated with salinity tolerance were spread across the genome and did not overly co-localize with regions associated with behavioural or intrinsic isolation. This preliminary analysis of the genetic architecture of reproductive isolation between Lucania species does not support the hypothesis that divergent natural selection for salinity tolerance led to behavioural and intrinsic isolation as a by-product. Combined with previous studies in this system, our work suggests that adaptation as a function of salinity contributes to habitat isolation and that reinforcement may have contributed to the evolution of behavioural isolation instead, possibly facilitated by linkage between behavioural isolation and intrinsic isolation loci on the fused chromosome.


Subject(s)
Adaptation, Biological/genetics , Fundulidae/genetics , Reproductive Isolation , Salinity , Salt Tolerance/genetics , Animals , Female , Fertilization , Genome , Male , Sex Chromosomes , Sexual Behavior, Animal
16.
Evolution ; 73(4): 777-791, 2019 04.
Article in English | MEDLINE | ID: mdl-30820950

ABSTRACT

Behavioral isolation is a potent barrier to gene flow and a source of striking diversity in the animal kingdom. However, it remains unclear if the linkage disequilibrium (LD) between sex-specific traits required for behavioral isolation results mostly from physical linkage between signal and preference loci or from directional mate preferences. Here, we test this in the field crickets Gryllus rubens and G. texensis. These closely related species diverged with gene flow and have strongly differentiated songs and preference functions for the mate calling song rhythm. We map quantitative trait loci for signal and preference traits (pQTL) as well as for gene expression associated with these traits (eQTL). We find strong, positive genetic covariance between song traits and between song and preference. Our results show that this is in part explained by incomplete physical linkage: although both linked pQTL and eQTL couple male and female traits, major effect loci for different traits were never on the same chromosome. We suggest that the finely tuned, highly divergent preference functions are likely an additional source of LD between male and female traits in this system. Furthermore, pleiotropy of gene expression presents an underappreciated mechanism to link sexually dimorphic phenotypes.


Subject(s)
Gryllidae/physiology , Linkage Disequilibrium , Mating Preference, Animal , Quantitative Trait Loci , Vocalization, Animal , Acoustics , Animals , Chromosome Mapping , Female , Gene Flow , Gryllidae/genetics , Male , Texas
17.
Proc Biol Sci ; 285(1881)2018 06 27.
Article in English | MEDLINE | ID: mdl-29925615

ABSTRACT

Large chromosomal rearrangements are thought to facilitate adaptation to heterogeneous environments by limiting genomic recombination. Indeed, inversions have been implicated in adaptation along environmental clines and in ecotype specialization. Here, we combine classical ecological studies and population genetics to investigate an inversion polymorphism previously documented in Europe among natural populations of the seaweed fly Coelopa frigida along a latitudinal cline in North America. We test if the inversion is present in North America and polymorphic, assess which environmental conditions modulate the inversion karyotype frequencies, and document the relationship between inversion karyotype and adult size. We sampled nearly 2000 flies from 20 populations along several environmental gradients to quantify associations of inversion frequencies to heterogeneous environmental variables. Genotyping and phenotyping showed a widespread and conserved inversion polymorphism between Europe and America. Variation in inversion frequency was significantly associated with environmental factors, with parallel patterns between continents, indicating that the inversion may play a role in local adaptation. The three karyotypes of the inversion are differently favoured across micro-habitats and represent life-history strategies likely to be maintained by the collective action of several mechanisms of balancing selection. Our study adds to the mounting evidence that inversions are facilitators of adaptation and enhance within-species diversity.


Subject(s)
Chromosome Inversion , Diptera/physiology , Environment , Karyotype , Adaptation, Biological , Animals , Canada , Diptera/genetics , Europe , Female , Male , United States
18.
Evolution ; 72(3): 553-567, 2018 03.
Article in English | MEDLINE | ID: mdl-29363111

ABSTRACT

Gene flow, demography, and selection can result in similar patterns of genomic variation and disentangling their effects is key to understanding speciation. Here, we assess transcriptomic variation to unravel the evolutionary history of Gryllus rubens and Gryllus texensis, cryptic field cricket species with highly divergent mating behavior. We infer their demographic history and screen their transcriptomes for footprints of selection in the context of the inferred demography. We find strong support for a long history of bidirectional gene flow, which ceased during the late Pleistocene, and a bottleneck in G. rubens consistent with a peripatric origin of this species. Importantly, the demographic history has likely strongly shaped patterns of genetic differentiation (empirical FST distribution). Concordantly, FST -based selection detection uncovers a large number of outliers, likely comprising many false positives, echoing recent theoretical insights. Alternative genetic signatures of positive selection, informed by the demographic history of the sibling species, highlighted a smaller set of loci; many of these are candidates for controlling variation in mating behavior. Our results underscore the importance of demography in shaping overall patterns of genetic divergence and highlight that examining both demography and selection facilitates a more complete understanding of genetic divergence during speciation.


Subject(s)
Gryllidae/physiology , Life History Traits , Selection, Genetic , Sexual Behavior, Animal , Transcriptome , Animals , Biological Evolution , Gryllidae/genetics
19.
PLoS One ; 12(5): e0177367, 2017.
Article in English | MEDLINE | ID: mdl-28520760

ABSTRACT

Acridid grasshoppers (Orthoptera:Acrididae) are widely used model organisms for developmental, evolutionary, and neurobiological research. Although there has been recent influx of orthopteran transcriptomic resources, many use pooled ontogenetic stages obscuring information about changes in gene expression during development. Here we developed a de novo transcriptome spanning 7 stages in the life cycle of the acridid grasshopper Chorthippus biguttulus. Samples from different stages encompassing embryonic development through adults were used for transcriptomic profiling, revealing patterns of differential gene expression that highlight processes in the different life stages. These patterns were validated with semi-quantitative RT-PCR. Embryonic development showed a strongly differentiated expression pattern compared to all of the other stages and genes upregulated in this stage were involved in signaling, cellular differentiation, and organ development. Our study is one of the first to examine gene expression during post-embryonic development in a hemimetabolous insect and we found that only the fourth and fifth instars had clusters of genes upregulated during these stages. These genes are involved in various processes ranging from synthesis of biogenic amines to chitin binding. These observations indicate that post-embryonic ontogeny is not a continuous process and that some instars are differentiated. Finally, genes upregulated in the imago were generally involved in aging and immunity. Our study highlights the importance of looking at ontogeny as a whole and indicates promising directions for future research in orthopteran development.


Subject(s)
Gene Expression Profiling , Grasshoppers/genetics , Transcriptome , Animals , Cluster Analysis , Computational Biology/methods , Female , Gene Expression Regulation , Grasshoppers/growth & development , High-Throughput Nucleotide Sequencing , Life Cycle Stages , Male , Molecular Sequence Annotation
20.
Sci Rep ; 6: 33695, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27677406

ABSTRACT

Cuticular hydrocarbons (CHCs) play a major role in the evolution of reproductive isolation between insect species. The CHC profiles of two closely related sympatric grasshopper species, Chorthippus biguttulus and C. mollis, differ mainly in the position of the first methyl group in major methyl-branched CHCs. The position of methyl branches is determined either by a fatty acid synthase (FAS) or by elongases. Both protein families showed an expansion in insects. Interestingly, the FAS family showed several lineage-specific expansions, especially in insect orders with highly diverse methyl-branched CHC profiles. We found five putative FASs and 12 putative elongases in the reference transcriptomes for both species. A dN/dS test showed no evidence for positive selection acting on FASs and elongases in these grasshoppers. However, one candidate FAS showed species-specific transcriptional differences and may contribute to the shift of the methyl-branch position between the species. In addition, transcript levels of four elongases were expressed differentially between the sexes. Our study indicates that complex methyl-branched CHC profiles are linked to an expansion of FASs genes, but that species differences can also mediated at the transcriptional level.

SELECTION OF CITATIONS
SEARCH DETAIL
...