Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1275388, 2023.
Article in English | MEDLINE | ID: mdl-38348353

ABSTRACT

Oral consumption of histidyl dipeptides such as l-carnosine has been suggested to promote cardiometabolic health, although therapeutic mechanisms remain incompletely understood. We recently reported that oral consumption of a carnosine analog suppressed markers of fibrosis in liver of obese mice, but whether antifibrotic effects of carnosine extend to the heart is not known, nor are the mechanisms by which carnosine is acting. Here, we investigated whether oral carnosine was able to mitigate the adverse cardiac remodeling associated with diet induced obesity in a mouse model of enhanced lipid peroxidation (i.e., glutathione peroxidase 4 deficient mice, GPx4+/-), a model which mimics many of the pathophysiological aspects of metabolic syndrome and T2 diabetes in humans. Wild-type (WT) and GPx4+/-male mice were randomly fed a standard (CNTL) or high fat high sucrose diet (HFHS) for 16 weeks. Seven weeks after starting the diet, a subset of the HFHS mice received carnosine (80 mM) in their drinking water for duration of the study. Carnosine treatment led to a moderate improvement in glycemic control in WT and GPx4+/-mice on HFHS diet, although insulin sensitivity was not significantly affected. Interestingly, while our transcriptomic analysis revealed that carnosine therapy had only modest impact on global gene expression in the heart, carnosine substantially upregulated cardiac GPx4 expression in both WT and GPx4+/-mice on HFHS diet. Carnosine also significantly reduced protein carbonyls and iron levels in myocardial tissue from both genotypes on HFHS diet. Importantly, we observed a robust antifibrotic effect of carnosine therapy in hearts from mice on HFHS diet, which further in vitro experiments suggest is due to carnosine's ability to suppress collagen-cross-linking. Collectively, this study reveals antifibrotic potential of carnosine in the heart with obesity and illustrates key mechanisms by which it may be acting.

2.
Antioxidants (Basel) ; 11(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35453406

ABSTRACT

Heterogeneity in the incidence of postoperative atrial fibrillation (POAF) following heart surgery implies that underlying genetic and/or physiological factors impart a higher risk of this complication to certain patients. Glutathione peroxidase-4 (GPx4) is a vital selenoenzyme responsible for neutralizing lipid peroxides, mediators of oxidative stress known to contribute to postoperative arrhythmogenesis. Here, we sought to determine whether GPX4 single nucleotide variants are associated with POAF, and whether any of these variants are linked with altered GPX4 enzyme content or activity in myocardial tissue. Sequencing analysis was performed across the GPX4 coding region within chromosome 19 from a cohort of patients (N = 189) undergoing elective coronary artery bypass graft (−/+ valve) surgery. GPx4 enzyme content and activity were also analyzed in matching samples of atrial myocardium from these patients. Incidence of POAF was 25% in this cohort. Five GPX4 variants were associated with POAF risk (permutated p ≤ 0.05), and eight variants associated with altered myocardial GPx4 content and activity (p < 0.05). One of these variants (rs713041) is a well-known modifier of cardiovascular disease risk. Collectively, these findings suggest GPX4 variants are potential risk modifiers and/or predictors of POAF. Moreover, they illustrate a genotype−phenotype link with this selenoenzyme, which will inform future mechanistic studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...