Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Pharmacol Physiol ; 23(8): 653-9, 1996 Aug.
Article in English | MEDLINE | ID: mdl-8886484

ABSTRACT

1. Previously it has been shown that tetrandrine (TET), a bis-benzylisoquinoline alkaloid, isolated from a Chinese herb Stephania tetrandra, can block non-voltage-operated Ca2+ entry activated by intracellular Ca2+ store depletion induced by thapsigargin (TSG) and can release intracellular Ca2+ in HL-60 cells. The present study attempted to identify the chemical group(s) of the TET molecule responsible for these dual effects. The effects of TET and its closely related analogues, hernandezine (HER) and berbamine (BER), on Ca2+ entry and Ca2+ release were compared in fura-2-loaded HL-60 cells. 2. Berbamine was much less potent (IC50 = 200 mumol/L) than TET and HER (both IC50 values = 25 mumol/L) in inhibiting Ca2+ entry activated by TSG. Furthermore, at 100 mumol/L, BER was much less effective than TET and HER in suppressing TSG-induced Mn2+ entry. At 30-100 mumol/L, BER was significantly less effective than both TET and HER in causing Ca2+ release from internal stores. However, only BER was able to cause store depletion-activated Ca2+ entry (or the so-called 'capacitative Ca2+ entry') upon Ca2+ readmission. 3. Taken together, the data from this structure-activity relationship study reveal that the -OCH3 group of one particular benzene ring of TET, which distinguishes TET from BER, in part produces the dual pharmacological actions of TET.


Subject(s)
Alkaloids/pharmacology , Benzylisoquinolines , Calcium Channel Blockers/pharmacology , Calcium/metabolism , Alkaloids/chemistry , Analysis of Variance , Animals , Calcium Channel Blockers/chemistry , Cattle , HL-60 Cells/drug effects , Humans , Structure-Activity Relationship
2.
Life Sci ; 58(25): 2327-35, 1996.
Article in English | MEDLINE | ID: mdl-8649222

ABSTRACT

Depletion of internal Ca2+ stores causes capacitative Ca2+ entry which occurs through non-selective cation channels sensitive to blockade by SK&F 96365. Recently, alkaloids of Chinese herbal medicinal origin, tetrandrine and hernandezine, have been shown to possess actions including inhibition of Ca2+ channels in non-excitable cell types. In this study, we compared the actions of these novel inhibitors to those of SK&F 96365 in fura-2-loaded endothelial cells from human umbilical vein and bovine pulmonary artery. Depletion of Ca2+ from the internal stores was accomplished in Ca(2+)-free medium using an endoplasmic reticulum Ca2+ pump inhibitor, cyclopiazonic acid (CPA) or receptor agonists, histamine and bradykinin. Stimulation with histamine or bradykinin caused a marked and rapid transient increase in Ca2+ signal whereas CPA caused a smaller amplitude increase of longer duration. Restoring Ca2+ to the medium caused marked and sustained increases in the fluorescence indicating movement of Ca2+ into the cytosol presumably stimulated by the emptied Ca2+ stores. SK&F 96365 as well as tetrandrine and hernandezine antagonized depletion-induced Ca2+ entry. The results suggest that these putative inhibitors interact with Ca2+ entry triggered by depletion of the internal Ca2+ stores and their action is presumed to be on the non-selective cation channels. Their effectiveness may be enhanced by the mechanisms which lead to the opening of the Ca2+ influx channel.


Subject(s)
Alkaloids/pharmacology , Benzylisoquinolines , Calcium/metabolism , Endothelium, Vascular/drug effects , Animals , Calcium/deficiency , Calcium Channel Blockers/pharmacology , Cattle , Cells, Cultured , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Humans , Imidazoles/pharmacology , Ion Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...