Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4649, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37532720

ABSTRACT

Gallium-containing alloys have recently been reported to hydrogenate CO2 to methanol at ambient pressures. However, a full understanding of the Ga-promoted catalysts is still missing due to the lack of information about the surface structures formed under reaction conditions. Here, we employed near ambient pressure scanning tunneling microscopy and x-ray photoelectron spectroscopy to monitor the evolution of well-defined Cu-Ga surfaces during CO2 hydrogenation. We show the formation of two-dimensional Ga(III) oxide islands embedded into the Cu surface in the reaction atmosphere. The islands are a few atomic layers in thickness and considerably differ from bulk Ga2O3 polymorphs. Such a complex structure, which could not be determined with conventional characterization methods on powder catalysts, should be used for elucidating the reaction mechanism on the Ga-promoted metal catalysts.

2.
Angew Chem Int Ed Engl ; 61(20): e202112640, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35243735

ABSTRACT

Atomically dispersed precious metals on oxide supports have recently become increasingly interesting catalytic materials. Nonetheless, their non-trivial preparation and limited thermal and environmental stability constitutes an issue for their potential applications. Here we demonstrate that an oxygen plasma pre-treatment of the ceria (CeO2 ) surface serves to anchor Pt single atoms, making them active and resistant towards sintering in the CO oxidation reaction. Through a combination of experimental results obtained on well-defined CeO2 films and theory, we show that the O2 plasma causes surface nanostructuring and the formation of surface peroxo (O2 2- ) species, favoring the uniform and dense distribution of isolated strongly bonded Pt2+ atoms. The promotional effect of the plasma treatment was further demonstrated on powder Pt/CeO2 catalysts. We believe that plasma functionalization can be applied to other metal/oxide systems to achieve tunable and stable catalysts with a high density of active sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...