Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(29): 15515-15521, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34268548

ABSTRACT

Flow-driven precipitation experiments are performed in model porous media shaped within the confinement of a Hele-Shaw cell. Precipitation pattern formation and the yield of the reaction are investigated when borosilicate glass beads of different sizes are used in a mono-layer arrangement. The trend of the amount of precipitate produced in various porous media is estimated via visual observation. In addition, a new method is elaborated to complement such image analysis based results by titration experiments performed on gel-embedded precipitate patterns. The yield of confined porous systems is compared to experiments carried out in unsegmented reactors. It is found that the obstacles increase the amount of product and preserve its radial spatial distribution. The precipitate pattern is successfully conserved in a slightly cross-linked hydrogel matrix and its microstructure is examined using SEM. The spatial distribution of the precipitate across the cell gap is revealed using X-ray microtomography.

2.
J Mater Chem B ; 9(24): 4929-4940, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34105573

ABSTRACT

The preparation of an antioxidant hybrid material by controlled heteroaggregation of manganese oxide nanoparticles (MnO2 NPs) and sulfate-functionalized polystyrene latex (SL) beads was accomplished. Negatively charged MnO2 NPs were prepared by precipitation and initially functionalized with poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte to induce charge reversal allowing decoration of oppositely charged SL surfaces via simple mixing. The PDADMAC-functionalized MnO2 NPs (PMn) aggregated with the SL particles leading to the formation of negatively charged, neutral and positively charged (SPMn) composites. The charge neutralization resulted in rapidly aggregating dispersions, while stable samples were observed once the composites possessed sufficiently high negative and positive charge, below and above the charge neutralization point, respectively. The antioxidant assays revealed that SL served as a suitable substrate and that the PDADMAC functionalization and immobilization of MnO2 NPs did not compromise their catalase (CAT) and superoxide dismutase (SOD)-like activities, which were also maintained within a wide temperature range. The obtained SPMn composite is expected to be an excellent candidate as an antioxidant material for the efficient scavenging of reactive oxygen species at both laboratory and larger scales, even under harsh conditions, where natural antioxidants do not function.


Subject(s)
Biocatalysis , Latex/chemistry , Manganese Compounds/chemistry , Oxides/chemistry , Reactive Oxygen Species/chemistry , Sulfates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...