Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(22): e202403063, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38529723

ABSTRACT

Ribonucleic acids (RNAs) play a vital role in living organisms. Many of their cellular functions depend critically on chemical modification. Methods to modify RNA in a controlled manner-both in vitro and in vivo-are thus essential to evaluate and understand RNA biology at the molecular and mechanistic levels. The diversity of modifications, combined with the size and uniformity of RNA (made up of only 4 nucleotides) makes its site-specific modification a challenging task that needs to be addressed by complementary approaches. One such approach is solid-phase RNA synthesis. We discuss recent developments in this field, starting with new protection concepts in the ongoing effort to overcome current size limitations. We continue with selected modifications that have posed significant challenges for their incorporation into RNA. These include deazapurine bases required for atomic mutagenesis to elucidate mechanistic aspects of catalytic RNAs, and RNA containing xanthosine, N4-acetylcytidine, 5-hydroxymethylcytidine, 3-methylcytidine, 2'-OCF3, and 2'-N3 ribose modifications. We also discuss the all-chemical synthesis of 5'-capped mRNAs and the enzymatic ligation of chemically synthesized oligoribonucleotides to obtain long RNA with multiple distinct modifications, such as those needed for single-molecule FRET studies. Finally, we highlight promising developments in RNA-catalyzed RNA modification using cofactors that transfer bioorthogonal functionalities.


Subject(s)
RNA , RNA/chemistry , RNA/chemical synthesis , Solid-Phase Synthesis Techniques/methods
2.
Beilstein J Org Chem ; 18: 1617-1624, 2022.
Article in English | MEDLINE | ID: mdl-36530531

ABSTRACT

Imidazopyridines and pyrrolopyrimidines are an important class of compounds in medicinal chemistry. They can also be considered as deaza-modified purine nucleobases, and as such have attracted a lot of interest recently in the context of RNA atomic mutagenesis. In particular, for 1-deazaguanine (c1G base), a significant increase in demand is apparent. Synthetic access is challenging and the few reports found in the literature suffer from the requirement of hazardous intermediates and harsh reaction conditions. Here, we report a new six-step synthesis for c1G base, starting from 6-iodo-1-deazapurine. The key transformations are copper catalyzed C-O-bond formation followed by site-specific nitration. A further strength of our route is divergency, additionally enabling the synthesis of 1-deazahypoxanthine (c1I base).

3.
Angew Chem Int Ed Engl ; 61(41): e202207590, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35982640

ABSTRACT

Nucleolytic ribozymes utilize general acid-base catalysis to perform phosphodiester cleavage. In most ribozyme classes, a conserved active site guanosine is positioned to act as general base, thereby activating the 2'-OH group to attack the scissile phosphate (γ-catalysis). Here, we present an atomic mutagenesis study for the pistol ribozyme class. Strikingly, "general base knockout" by replacement of the guanine N1 atom by carbon results in only 2.7-fold decreased rate. Therefore, the common view that γ-catalysis critically depends on the N1 moiety becomes challenged. For pistol ribozymes we found that γ-catalysis is subordinate in overall catalysis, made up by two other catalytic factors (α and δ). Our approach allows scaling of the different catalytic contributions (α, ß, γ, δ) with unprecedented precision and paves the way for a thorough mechanistic understanding of nucleolytic ribozymes with active site guanines.


Subject(s)
RNA, Catalytic , Carbon , Catalysis , Guanine , Guanosine , Nucleic Acid Conformation , Phosphates , RNA, Catalytic/metabolism
4.
J Am Chem Soc ; 144(23): 10344-10352, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35666572

ABSTRACT

Atomic mutagenesis is the key to advance our understanding of RNA recognition and RNA catalysis. To this end, deazanucleosides are utilized to evaluate the participation of specific atoms in these processes. One of the remaining challenges is access to RNA-containing 1-deazaguanosine (c1G). Here, we present the synthesis of this nucleoside and its phosphoramidite, allowing first time access to c1G-modified RNA. Thermodynamic analyses revealed the base pairing parameters for c1G-modified RNA. Furthermore, by NMR spectroscopy, a c1G-triggered switch of Watson-Crick into Hoogsteen pairing in HIV-2 TAR RNA was identified. Additionally, using X-ray structure analysis, a guanine-phosphate backbone interaction affecting RNA fold stability was characterized, and finally, the critical impact of an active-site guanine in twister ribozyme on the phosphodiester cleavage was revealed. Taken together, our study lays the synthetic basis for c1G-modified RNA and demonstrates the power of the completed deazanucleoside toolbox for RNA atomic mutagenesis needed to achieve in-depth understanding of RNA recognition and catalysis.


Subject(s)
RNA, Catalytic , RNA , Base Pairing , Guanine , Mutagenesis , Nucleic Acid Conformation , RNA/chemistry , RNA, Catalytic/chemistry
5.
Angew Chem Weinheim Bergstr Ger ; 134(41): e202207590, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-38505292

ABSTRACT

Nucleolytic ribozymes utilize general acid-base catalysis to perform phosphodiester cleavage. In most ribozyme classes, a conserved active site guanosine is positioned to act as general base, thereby activating the 2'-OH group to attack the scissile phosphate (γ-catalysis). Here, we present an atomic mutagenesis study for the pistol ribozyme class. Strikingly, "general base knockout" by replacement of the guanine N1 atom by carbon results in only 2.7-fold decreased rate. Therefore, the common view that γ-catalysis critically depends on the N1 moiety becomes challenged. For pistol ribozymes we found that γ-catalysis is subordinate in overall catalysis, made up by two other catalytic factors (α and δ). Our approach allows scaling of the different catalytic contributions (α, ß, γ, δ) with unprecedented precision and paves the way for a thorough mechanistic understanding of nucleolytic ribozymes with active site guanines.

6.
Nucleic Acids Res ; 49(8): 4281-4293, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33856457

ABSTRACT

Deazapurine nucleosides such as 3-deazaadenosine (c3A) are crucial for atomic mutagenesis studies of functional RNAs. They were the key for our current mechanistic understanding of ribosomal peptide bond formation and of phosphodiester cleavage in recently discovered small ribozymes, such as twister and pistol RNAs. Here, we present a comprehensive study on the impact of c3A and the thus far underinvestigated 3-deazaguanosine (c3G) on RNA properties. We found that these nucleosides can decrease thermodynamic stability of base pairing to a significant extent. The effects are much more pronounced for 3-deazapurine nucleosides compared to their constitutional isomers of 7-deazapurine nucleosides (c7G, c7A). We furthermore investigated base pair opening dynamics by solution NMR spectroscopy and revealed significantly enhanced imino proton exchange rates. Additionally, we solved the X-ray structure of a c3A-modified RNA and visualized the hydration pattern of the minor groove. Importantly, the characteristic water molecule that is hydrogen-bonded to the purine N3 atom and always observed in a natural double helix is lacking in the 3-deazapurine-modified counterpart. Both, the findings by NMR and X-ray crystallographic methods hence provide a rationale for the reduced pairing strength. Taken together, our comparative study is a first major step towards a comprehensive understanding of this important class of nucleoside modifications.


Subject(s)
RNA Stability , RNA/chemistry , Tubercidin/chemistry , Base Pairing , Crystallography, X-Ray , Mutagenesis , Purines/chemistry , RNA/genetics , Thermodynamics
7.
Faraday Discuss ; 215(0): 141-161, 2019 07 04.
Article in English | MEDLINE | ID: mdl-30942209

ABSTRACT

Inspired by natural photosynthesis, features such as proton relays have been integrated into water reduction catalysts (WRC) for effective production of hydrogen. Research by DuBois et al. showed the crucial influence of these relays, largely in the form of pendant amine functions. In this work catalysts are presented containing innovative diphosphinoamine ligands: [M(ii)Cl2(PNP-C1)], [M(ii)(MeCN)2(PNP-C1)]2+, [M(ii)(PNP-C1)2]2+, and [M(ii)Cl(PNP-C2)]+ (M = Pt2+, Pd2+, Ni2+, Co2+; PNP-C1 = N,N-bis{(di(2-methoxyphenyl)phosphino)methyl}-N-alkylamine, PNP-C2 = N,N-bis{(di(2-methoxyphenyl)phosphino)ethyl}-N-alkylamine and alkyl = Me, Et, iso-Pr, Bz). Synthetic strategies and detailed characterisation are covered, including 1H-, 13C-, and 31P-NMR analysis, mass spectroscopy and single crystal X-ray diffractometry (XRD). The catalytic properties have been explored by changing the pendant amines and auxiliary methoxy coordination sites, as well as enlarging the ligand backbone. Moreover, confirmed by density functional theory (DFT) calculations based on XRD data in vacuo and solvent environment, two very different catalytic cycles are proposed. PNP-C1 shows a classical proton relay, whereas PNP-C2 allows an additional coordination of nitrogen, acting optionally like a pincer. Through new insights into efficiency and stability-increasing influences of proton relays in general, their number per metal centre, an enlarged ligand backbone and the use of solvato instead of halogenido complexes, substantial improvements have been made in catalytic performance over the DuBois et al. catalysts and recently self-made WRCs. The turnover number (TON) related to the single site of cost-efficient nickel WRCs is increased from 11.4 to 637, whereas a corresponding palladium catalyst gives TON as high as 2289.

SELECTION OF CITATIONS
SEARCH DETAIL
...