Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Eur J Nucl Med Mol Imaging ; 50(13): 4024-4035, 2023 11.
Article in English | MEDLINE | ID: mdl-37606858

ABSTRACT

PURPOSE: To determine if pretreatment [18F]FDG PET/CT could contribute to predicting complete pathological complete response (pCR) in patients with early-stage triple-negative breast cancer (TNBC) undergoing neoadjuvant chemotherapy with or without pembrolizumab. METHODS: In this retrospective bicentric study, we included TNBC patients who underwent [18F]FDG PET/CT before neoadjuvant chemotherapy (NAC) or chemo-immunotherapy (NACI) between March 2017 and August 2022. Clinical, biological, and pathological data were collected. Tumor SUVmax and total metabolic tumor volume (TMTV) were measured from the PET images. Cut-off values were determined using ROC curves and a multivariable model was developed using logistic regression to predict pCR. RESULTS: N = 191 patients were included. pCR rates were 53 and 70% in patients treated with NAC (N = 91) and NACI (N = 100), respectively (p < 0.01). In univariable analysis, high Ki67, high tumor SUVmax (> 12.3), and low TMTV (≤ 3.0 cm3) were predictors of pCR in the NAC cohort while tumor staging classification (< T3), BRCA1/2 germline mutation, high tumor SUVmax (> 17.2), and low TMTV (≤ 7.3 cm3) correlated with pCR in the NACI cohort. In multivariable analysis, only high tumor SUVmax (NAC: OR 8.8, p < 0.01; NACI: OR 3.7, p = 0.02) and low TMTV (NAC: OR 6.6, p < 0.01; NACI: OR 3.5, p = 0.03) were independent factors for pCR in both cohorts, albeit at different thresholds. CONCLUSION: High tumor metabolism (SUVmax) and low tumor burden (TMTV) could predict pCR after NAC regardless of the addition of pembrolizumab. Further studies are warranted to validate such findings and determine how these biomarkers could be used to guide neoadjuvant therapy in TNBC patients.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Positron Emission Tomography Computed Tomography , Fluorodeoxyglucose F18 , Neoadjuvant Therapy/methods , BRCA1 Protein , Radiopharmaceuticals/therapeutic use , Retrospective Studies , BRCA2 Protein
2.
Sci Rep ; 12(1): 15341, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36097015

ABSTRACT

We previously showed that the injected activity could be reduced to 1 MBq/kg without significantly degrading image quality for the exploration of neurocognitive disorders in 18F-FDG-PET/MRI. We now hypothesized that injected activity could be reduced ten-fold. We simulated a 18F-FDG-PET/MRI ultra-low-dose protocol (0.2 MBq/Kg, PETULD) and compared it to our reference protocol (2 MBq/Kg, PETSTD) in 50 patients with cognitive impairment. We tested the reproducibility between PETULD and PETSTD using SUVratios measurements. We also assessed the impact of PETULD for between-group comparisons and for visual analysis performed by three physicians. The intra-operator agreement between visual assessment of PETSTD and PETULD in patients with severe anomalies was substantial to almost perfect (kappa > 0.79). For patients with normal metabolism or moderate hypometabolism however, it was only moderate to substantial (kappa > 0.53). SUV ratios were strongly reproducible (SUVratio difference ± SD = 0.09 ± 0.08). Between-group comparisons yielded very similar results using either PETULD or PETSTD. 18F-FDG activity may be reduced to 0.2 MBq/Kg without compromising quantitative measurements. The visual interpretation was reproducible between ultra-low-dose and standard protocol for patients with severe hypometabolism, but less so for those with moderate hypometabolism. These results suggest that a low-dose protocol (1 MBq/Kg) should be preferred in the context of neurodegenerative disease diagnosis.


Subject(s)
Neurodegenerative Diseases , Sexually Transmitted Diseases , Brain/diagnostic imaging , Fluorodeoxyglucose F18 , Humans , Magnetic Resonance Imaging/methods , Reproducibility of Results
3.
J Radiol Prot ; 42(2)2022 04 27.
Article in English | MEDLINE | ID: mdl-35296565

ABSTRACT

Since 2010, positron emission tomography/magnetic resonance (PET/MR) has been increasingly used as clinical routine in nuclear medicine departments. One advantage of PET/MR over PET/computed tomography (CT) is the lower dose of ionising radiation delivered to patients. However, data on the radiation dose delivered to staff operating PET/MR compared with the new generation of PET/CT equipment are still lacking. Our aim was to compare the radiation dose to nuclear medicine technologists performing routine PET/MR and PET/CT in the same department. We retrospectively measured the daily radiation dose received by PET technologists over 13 months by collecting individual dosimetry measurements (from electronic personal dosimeters). Data were analysed taking into account the total number of studies performed with each PET modality (PET/MR with Signa 3T, General Electric Healthcare versus PET/CT with Biograph mCT flow, Siemens), the type of exploration (brain versus whole-body PET), the18F activity injected per day and per patient as well as the time spent in contact with patients after tracer injection. Our results show a significantly higher whole-body exposure to technologists for PET/MR compared with PET/CT (10.3 ± 3.5 nSv versus 4.7 ± 1.2 nSv per18F injected MBq, respectively;p< 0.05). This difference was related to prolonged contact with injected patients during patient positioning with the PET/MR device and MR coil placement, especially in whole-body studies. For an equal injected activity, radiation exposure to PET technologists for PET/MR was twice that of PET/CT. To minimise the radiation dose to staff, efforts should be made to optimise patient positioning, even in departments with extensive PET/CT experience.


Subject(s)
Nuclear Medicine , Occupational Exposure , Fluorodeoxyglucose F18 , Humans , Magnetic Resonance Spectroscopy , Occupational Exposure/analysis , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography , Radiation Dosage , Radiopharmaceuticals , Retrospective Studies , Tomography, X-Ray Computed
4.
Clin Neuroradiol ; 32(3): 735-747, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35147721

ABSTRACT

OBJECTIVE: 18F­fluoro-L­3,4­dihydroxyphenylalanine positron emission tomography (F­DOPA PET) is used in glioma follow-up after radiotherapy to discriminate treatment-related changes (TRC) from tumor progression (TP). We compared the performances of a combined PET and MRI analysis with F­DOPA current standard of interpretation. METHODS: We included 76 consecutive patients showing at least one gadolinium-enhanced lesion on the T1­w MRI sequence (T1G). Two nuclear medicine physicians blindly analyzed PET/MRI images. In addition to the conventional PET analysis, they looked for F­DOPA uptake(s) outside T1G-enhanced areas (T1G/PET), in the white matter (WM/PET), for T1G-enhanced lesion(s) without sufficiently concordant F­DOPA uptake (T1G+/PET), and F­DOPA uptake(s) away from hemorrhagic changes as shown with a susceptibility weighted imaging sequence (SWI/PET). We measured lesions' F­DOPA uptake ratio using healthy brain background (TBR) and striatum (T/S) as references, and lesions' perfusion with arterial spin labelling cerebral blood flow maps (rCBF). Scores were determined by logistic regression. RESULTS: 53 and 23 patients were diagnosed with TP and TRC, respectively. The accuracies were 74% for T/S, 76% for TBR, and 84% for rCBF, with best cut-off values of 1.3, 3.7 and 1.25, respectively. For hybrid variables, best accuracies were obtained with conventional analysis (82%), T1G+/PET (82%) and SWI/PET (81%). T1G+/PET, SWI/PET and rCBF ≥ 1.25 were selected to construct a 3-point score. It outperformed conventional analysis and rCBF with an AUC of 0.94 and an accuracy of 87%. CONCLUSIONS: Our scoring approach combining F­DOPA PET and MRI provided better accuracy than conventional PET analyses for distinguishing TP from TRC in our patients after radiation therapy.


Subject(s)
Brain Neoplasms , Glioma , Dihydroxyphenylalanine , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography , Radiopharmaceuticals , Sensitivity and Specificity
5.
Eur J Nucl Med Mol Imaging ; 47(5): 1147-1157, 2020 05.
Article in English | MEDLINE | ID: mdl-31754795

ABSTRACT

PURPOSE: We aimed to evaluate if imaging biomarkers on FDG PET are associated with clinical outcomes in patients with advanced non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs). METHODS: In this retrospective monocentric study, we included 109 patients with advanced NSCLC who underwent baseline FDG PET/CT before ICI initiation between July 2013 and September 2018. Clinical, biological (including dNLR = neutrophils/[leukocytes minus neutrophils]), pathological and PET parameters (tumor SUVmax, total metabolic tumor volume [TMTV]) were evaluated. A multivariate prediction model was developed using Cox models for progression-free survival (PFS) and overall survival (OS). The association between biomarkers on FDG PET/CT and disease clinical benefit (DCB) was tested using logistic regression. RESULTS: Eighty patients were eligible. Median follow-up was 11.6 months (95%CI 7.7-15.5). Sixty-four and 52 patients experienced progression and death, respectively. DCB was 40%. In multivariate analyses, TMTV > 75 cm3 and dNLR > 3 were associated with shorter OS (HR 2.5, 95%CI 1.3-4.7 and HR 3.3, 95%CI 1.6-6.4) and absence of DCB (OR 0.3, 95%CI 0.1-0.9 and OR 0.4, 95%CI 0.2-0.9). Unlike TMTV, dNLR was a significant prognostic factor for PFS (HR 1.9, 95%CI 1.1-3.3) along with anemia (HR 1.9, 95%CI 1.2-3.8). No association was observed between tumor SUVmax and PFS or OS. CONCLUSION: Baseline tumor burden (TMTV) on FDG PET/CT scans and inflammatory status (dNLR) were associated with poor OS and absence of DCB for ICI treatment in advanced NSCLC patients, unlike tumor SUVmax, and may be used together to improve the selection of appropriate candidates.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Fluorodeoxyglucose F18 , Humans , Immune Checkpoint Inhibitors , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Positron Emission Tomography Computed Tomography , Prognosis , Retrospective Studies , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...