Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895223

ABSTRACT

The presence of antibodies against HIV in infected children is associated with a greater capacity to control viremia in the absence of therapy. While the benefits of early antiretroviral treatment (ART) in infants are well documented, early ART may interfere with the development of antibody responses. In contrast to adults, early treated children lack detectable HIV-specific antibodies, suggesting a fundamental difference in HIV pathogenesis. Despite this potential adverse effect, early ART may decrease the size of the latent reservoir established early in infection in infants, which can be beneficial in viral control. Understanding the virologic and immunologic aspects of pediatric HIV is crucial to inform innovative targeted strategies for treating children living with HIV. In this study, we investigate how ART initiation time sets the stage for trade-offs in the latent reservoir establishment and the development of humoral immunity and how these, in turn, affect posttreatment dynamics. We also elucidate the biological function of antibodies in pediatric HIV. We employ mathematical modeling coupled with experimental data from an infant nonhuman primate Simian/Human Immunodeficiency Virus (SHIV) infection model. Infant Rhesus macaques (RMs) were orally challenged with SHIV.C.CH505 375H dCT four weeks after birth and started treatment at different times after infection. In addition to viral load measurements, antibody responses and latent reservoir sizes were measured. We estimate model parameters by fitting viral load measurements to the standard HIV viral dynamics model within a nonlinear fixed effects framework. This approach allows us to capture differences between rhesus macaques (RMs) that develop antibody responses or exhibit high latent reservoir sizes compared to those that do not. We find that neutralizing antibody responses are associated with increased viral clearance and decreased viral infectivity but decreased death rate of infected cells. In addition, the presence of detectable latent reservoir is associated with less robust immune responses. These results demonstrate that both immune response and latent reservoir dynamics are needed to understand post-rebound dynamics and point to the necessity of a comprehensive approach in tailoring personalized medical interventions.

2.
bioRxiv ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38826467

ABSTRACT

Viral dynamics of acute HIV infection and HIV rebound following suspension of antiretroviral therapy may be qualitatively similar but must differ given, for one, development of adaptive immune responses. Understanding the differences of acute HIV infection and viral rebound dynamics in pediatric populations may provide insights into the mechanisms of viral control with potential implications for vaccine design and the development of effective targeted therapeutics for infants and children. Mathematical models have been a crucial tool to elucidate the complex processes driving viral infections within the host. Traditionally, acute HIV infection has been modeled with a standard model of viral dynamics initially developed to explore viral decay during treatment, while viral rebound has necessitated extensions of that standard model to incorporate explicit immune responses. Previous efforts to fit these models to viral load data have underscored differences between the two infection stages, such as increased viral clearance rate and increased death rate of infected cells during rebound. However, these findings have been predicated on viral load measurements from disparate adult individuals. In this study, we aim to bridge this gap, in infants, by comparing the dynamics of acute infection and viral rebound within the same individuals by leveraging an infant nonhuman primate Simian/Human Immunodeficiency Virus (SHIV) infection model. Ten infant Rhesus macaques (RMs) orally challenged with SHIV.C.CH505 375H dCT and given ART at 8 weeks post-infection. These infants were then monitored for up to 60 months post-infection with serial viral load and immune measurements. We use the HIV standard viral dynamics model fitted to viral load measurements in a nonlinear mixed effects framework. We find that the primary difference between acute infection and rebound is the increased death rate of infected cells during rebound. We use these findings to generate hypotheses on the effects of adaptive immune responses. We leverage these findings to formulate hypotheses to elucidate the observed results and provide arguments to support the notion that delayed viral rebound is characterized by a stronger CD8+ T cell response.

3.
NPJ Vaccines ; 8(1): 183, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001122

ABSTRACT

An effective HIV-1 vaccine remains a critical unmet need for ending the AIDS epidemic. Vaccine trials conducted to date have suggested the need to increase the durability and functionality of vaccine-elicited antibodies to improve efficacy. We hypothesized that a conjugate vaccine based on the learned response to immunization with hepatitis B virus could be utilized to expand T cell help and improve antibody production against HIV-1. To test this, we developed an innovative conjugate vaccine regimen that used a modified vaccinia virus Ankara (MVA) co-expressing HIV-1 envelope (Env) and the hepatitis B virus surface antigen (HBsAg) as a prime, followed by two Env-HBsAg conjugate protein boosts. We compared the immunogenicity of this conjugate regimen to matched HIV-1 Env-only vaccines in two groups of 5 juvenile rhesus macaques previously immunized with hepatitis B vaccines in infancy. We found expansion of both HIV-1 and HBsAg-specific circulating T follicular helper cells and elevated serum levels of CXCL13, a marker for germinal center activity, after boosting with HBsAg-Env conjugate antigens in comparison to Env alone. The conjugate vaccine elicited higher levels of antibodies binding to select HIV Env antigens, but we did not observe significant improvement in antibody functionality, durability, maturation, or B cell clonal expansion. These data suggests that conjugate vaccination can engage both HIV-1 Env and HBsAg specific T cell help and modify antibody responses at early time points, but more research is needed to understand how to leverage this strategy to improve the durability and efficacy of next-generation HIV vaccines.

4.
bioRxiv ; 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37986885

ABSTRACT

A vaccine that can achieve protective immunity prior to sexual debut is critical to prevent the estimated 410,000 new HIV infections that occur yearly in adolescents. As children living with HIV can make broadly neutralizing antibody (bnAb) responses in plasma at a faster rate than adults, early childhood is an opportune window for implementation of a multi-dose HIV immunization strategy to elicit protective immunity prior to adolescence. Therefore, the goal of our study was to assess the ability of a B cell lineage-designed HIV envelope SOSIP to induce bnAbs in early life. Infant rhesus macaques (RMs) received either BG505 SOSIP or the germline-targeting BG505 GT1.1 SOSIP (n=5/group) with the 3M-052-SE adjuvant at 0, 6, and 12 weeks of age. All infant RMs were then boosted with the BG505 SOSIP at weeks 26, 52 and 78, mimicking a pediatric immunization schedule of multiple vaccine boosts within the first two years of life. Both immunization strategies induced durable, high magnitude binding antibodies and plasma autologous virus neutralization that primarily targeted the CD4-binding site (CD4bs) or C3/465 epitope. Notably, three BG505 GT1.1-immunized infants exhibited a plasma HIV neutralization signature reflective of VRC01-like CD4bs bnAb precursor development and heterologous virus neutralization. Finally, infant RMs developed precursor bnAb responses at a similar frequency to that of adult RMs receiving a similar immunization strategy. Thus, a multi-dose immunization regimen with bnAb lineage designed SOSIPs is a promising strategy for inducing protective HIV bnAb responses in childhood prior to adolescence when sexual HIV exposure risk begins.

5.
bioRxiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37502921

ABSTRACT

While the benefits of early antiretroviral therapy (ART) initiation in perinatally infected infants are well documented, early ART initiation is not always possible in postnatal pediatric HIV infections, which account for the majority of pediatric HIV cases worldwide. The timing of onset of ART initiation is likely to affect the size of the latent viral reservoir established, as well as the development of adaptive immune responses, such as the generation of neutralizing antibody responses against the virus. How these parameters impact the ability of infants to control viremia and the time to viral rebound after ART interruption is unclear. To gain insight into the dynamics, we utilized mathematical models to investigate the effect of time of ART initiation via latent reservoir size and autologous virus neutralizing antibody responses in delaying viral rebound when treatment is interrupted. We used an infant nonhuman primate Simian/Human Immunodeficiency Virus (SHIV) infection model that mimics breast milk HIV transmission in human infants. Infant Rhesus macaques (RMs) were orally challenged with SHIV.C.CH505 375H dCT and either given ART at 4-7 days post-infection (early ART condition), at 2 weeks post-infection (intermediate ART condition), or at 8 weeks post-infection (late ART condition). These infants were then monitored for up to 60 months post-infection with serial viral load and immune measurements. We develop a stochastic mathematical model to investigate the joint effect of latent reservoir size, the autologous neutralizing antibody potency, and CD4+ T cell levels on the time to viral rebound and control of post-rebound viral loads. We find that the latent reservoir size is an important determinant in explaining time to viral rebound by affecting the growth rate of the virus. The presence of neutralizing antibodies also can delay rebound, but we find this effect for high potency antibody responses only.

6.
Sci Adv ; 8(38): eabq0273, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36149967

ABSTRACT

To develop vaccines for certain key global pathogens such as HIV, it is crucial to elicit both neutralizing and non-neutralizing Fc-mediated effector antibody functions. Clinical evidence indicates that non-neutralizing antibody functions including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) contribute to protection against several pathogens. In this study, we demonstrated that conjugation of HIV Envelope (Env) antigen gp120 to a self-assembling nanofiber material named Q11 induced antibodies with higher breadth and functionality when compared to soluble gp120. Immunization with Q11-conjugated gp120 vaccine (gp120-Q11) demonstrated higher tier 1 neutralization, ADCP, and ADCC as compared to soluble gp120. Moreover, Q11 conjugation altered the Fc N-glycosylation profile of antigen-specific antibodies, leading to a phenotype associated with increased ADCC in animals immunized with gp120-Q11. Thus, this nanomaterial vaccine strategy can enhance non-neutralizing antibody functions possibly through modulation of immunoglobulin G Fc N-glycosylation.


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Nanofibers , Animals , Glycosylation , HIV Antibodies , HIV Infections/prevention & control , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G , Vaccines, Subunit
7.
Front Immunol ; 13: 885272, 2022.
Article in English | MEDLINE | ID: mdl-35911681

ABSTRACT

Early initiation of antiretroviral therapy (ART) significantly improves clinical outcomes and reduces mortality of infants/children living with HIV. However, the ability of infected cells to establish latent viral reservoirs shortly after infection and to persist during long-term ART remains a major barrier to cure. In addition, while early ART treatment of infants living with HIV can limit the size of the virus reservoir, it can also blunt HIV-specific immune responses and does not mediate clearance of latently infected viral reservoirs. Thus, adjunctive immune-based therapies that are geared towards limiting the establishment of the virus reservoir and/or mediating the clearance of persistent reservoirs are of interest for their potential to achieve viral remission in the setting of pediatric HIV. Because of the differences between the early life and adult immune systems, these interventions may need to be tailored to the pediatric settings. Understanding the attributes and specificities of the early life immune milieu that are likely to impact the virus reservoir is important to guide the development of pediatric-specific immune-based interventions towards viral remission and cure. In this review, we compare the immune profiles of pediatric and adult HIV elite controllers, discuss the characteristics of cellular and anatomic HIV reservoirs in pediatric populations, and highlight the potential values of current cure strategies using immune-based therapies for long-term viral remission in the absence of ART in children living with HIV.


Subject(s)
CD4-Positive T-Lymphocytes , HIV Infections , Adult , Child , Humans , Infant , Secondary Prevention
8.
J Clin Invest ; 132(16)2022 08 15.
Article in English | MEDLINE | ID: mdl-35763348

ABSTRACT

Human cytomegalovirus (HCMV) is the most common congenital infection and a leading cause of stillbirth, neurodevelopmental impairment, and pediatric hearing loss worldwide. Development of a maternal vaccine or therapeutic to prevent congenital HCMV has been hindered by limited knowledge of the immune responses that protect against HCMV transmission in utero. To identify protective antibody responses, we measured HCMV-specific IgG binding and antiviral functions in paired maternal and cord blood sera from HCMV-seropositive transmitting (n = 41) and non-transmitting (n = 40) mother-infant dyads identified via a large, US-based, public cord blood bank. We found that high-avidity IgG binding to HCMV and antibody-dependent cellular phagocytosis (ADCP) were associated with reduced risk of congenital HCMV infection. We also determined that HCMV-specific IgG activation of FcγRI and FcγRII was enhanced in non-transmitting dyads and that increased ADCP responses were mediated through both FcγRI and FcγRIIA expressed on human monocytes. These findings suggest that engagement of FcγRI/FcγRIIA and Fc effector functions including ADCP may protect against congenital HCMV infection. Taken together, these data can guide future prospective studies on immune correlates against congenital HCMV transmission and inform HCMV vaccine and immunotherapeutic development.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus Vaccines , Herpesviridae Infections , Antibodies, Viral , Antibody Formation , Child , Cytomegalovirus , Cytomegalovirus Infections/prevention & control , Cytomegalovirus Vaccines/therapeutic use , Herpesviridae Infections/drug therapy , Humans , Immunoglobulin G , Prospective Studies
9.
mSphere ; 7(1): e0083921, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196125

ABSTRACT

Improved access to antiretroviral therapy (ART) and antenatal care has significantly reduced in utero and peripartum mother-to-child human immunodeficiency virus (HIV) transmission. However, as breast milk transmission of HIV still occurs at an unacceptable rate, there remains a need to develop an effective vaccine for the pediatric population. Previously, we compared different HIV vaccine strategies, intervals, and adjuvants in infant rhesus macaques to optimize the induction of HIV envelope (Env)-specific antibodies with Fc-mediated effector function. In this study, we tested the efficacy of an optimized vaccine regimen against oral simian-human immunodeficiency virus (SHIV) acquisition in infant macaques. Twelve animals were immunized with 1086.c gp120 protein adjuvanted with 3M-052 in stable emulsion and modified vaccinia Ankara (MVA) virus expressing 1086.c HIV Env. Twelve control animals were immunized with empty MVA. The vaccine prime was given within 10 days of birth, with booster doses being administered at weeks 6 and 12. The vaccine regimen induced Env-specific plasma IgG antibodies capable of antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Beginning at week 15, infants were exposed orally to escalating doses of heterologous SHIV-1157(QNE)Y173H once a week until infected. Despite the induction of strong Fc-mediated antibody responses, the vaccine regimen did not reduce the risk of infection or time to acquisition compared to controls. However, among vaccinated animals, ADCC postvaccination and postinfection was associated with reduced peak viremia. Thus, nonneutralizing Env-specific antibodies with Fc effector function elicited by this vaccine regimen were insufficient for protection against heterologous oral SHIV infection shortly after the final immunization but may have contributed to control of viremia. IMPORTANCE Women of childbearing age are three times more likely to contract HIV infection than their male counterparts. Poor HIV testing rates coupled with low adherence to antiretroviral therapy (ART) result in a high risk of mother-to-infant HIV transmission, especially during the breastfeeding period. A preventative vaccine could curb pediatric HIV infections, reduce potential health sequalae, and prevent the need for lifelong ART in this population. The results of the current study imply that the HIV Env-specific IgG antibodies elicited by this candidate vaccine regimen, despite a high magnitude of Fc-mediated effector function but a lack of neutralizing antibodies and polyfunctional T cell responses, were insufficient to protect infant rhesus macaques against oral virus acquisition.


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Simian Immunodeficiency Virus , Animals , Child , Female , HIV Antibodies , Humans , Immunoglobulin G , Infectious Disease Transmission, Vertical/prevention & control , Macaca mulatta , Male , Pregnancy , Vaccinia virus , Viremia
10.
PLoS One ; 16(12): e0256885, 2021.
Article in English | MEDLINE | ID: mdl-34972105

ABSTRACT

Different HIV vaccine regimens elicit distinct plasma antibody responses in both human and nonhuman primate models. Previous studies in human and non-human primate infants showed that adjuvants influenced the quality of plasma antibody responses induced by pediatric HIV envelope vaccine regimens. We recently reported that use of the 3M052-SE adjuvant and longer intervals between vaccinations are associated with higher magnitude of antibody responses in infant rhesus macaques. However, the impact of different adjuvants in HIV vaccine regimens on the developing infant B cell receptor (BCR) repertoire has not been studied. This study evaluated whether pediatric HIV envelope vaccine regimens with different adjuvants induced distinct antigen-specific memory B cell repertoires and whether specific immunoglobulin (Ig) immunogenetic characteristics are associated with higher magnitude of plasma antibody responses in vaccinated infant rhesus macaques. We utilized archived preclinical pediatric HIV vaccine studies PBMCs and tissue samples from 19 infant rhesus macaques immunized either with (i) HIV Env protein with a squalene adjuvant, (ii) MVA-HIV and Env protein co-administered using a 3-week interval, (iii) MVA-HIV prime/ protein boost with an extended 6-week interval between immunizations, or (iv) with HIV Env administered with 3M-052-SE adjuvant. Frequencies of vaccine-elicited HIV Env-specific memory B cells from PBMCs and tissues were similar across vaccination groups (frequency range of 0.06-1.72%). There was no association between vaccine-elicited antigen-specific memory B cell frequencies and plasma antibody titer or avidity. Moreover, the epitope specificity and Ig immunogenetic features of vaccine-elicited monoclonal antibodies did not differ between the different vaccine regimens. These data suggest that pediatric HIV envelope vaccine candidates with different adjuvants that previously induced higher magnitude and quality of plasma antibody responses in infant rhesus macaques were not driven by distinct antigen-specific memory BCR repertoires.


Subject(s)
AIDS Vaccines/blood , AIDS Vaccines/immunology , Adjuvants, Immunologic/pharmacology , Antibody Formation/immunology , Receptors, Antigen, B-Cell/metabolism , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibody Formation/drug effects , Child , Complementarity Determining Regions , Epitopes/immunology , Humans , Immunization , Immunoglobulin Heavy Chains/metabolism , Immunologic Memory/drug effects , Macaca mulatta , Somatic Hypermutation, Immunoglobulin , Toll-Like Receptors/agonists , Toll-Like Receptors/metabolism
11.
JCI Insight ; 6(23)2021 12 08.
Article in English | MEDLINE | ID: mdl-34699383

ABSTRACT

Understanding viral rebound in pediatric HIV-1 infection may inform the development of alternatives to lifelong antiretroviral therapy (ART) to achieve viral remission. We thus investigated viral rebound after analytical treatment interruption (ATI) in 10 infant macaques orally infected with SHIV.C.CH505 and treated with long-term ART. Rebound viremia was detected within 7 to 35 days of ATI in 9 of 10 animals, with posttreatment control of viremia seen in 5 of 5 Mamu-A*01+ macaques. Single-genome sequencing revealed that initial rebound virus was similar to viral DNA present in CD4+ T cells from blood, rectum, and lymph nodes before ATI. We assessed the earliest sites of viral reactivation immediately following ATI using ImmunoPET imaging. The largest increase in signal that preceded detectable viral RNA in plasma was found in the gastrointestinal (GI) tract, a site with relatively high SHIV RNA/DNA ratios in CD4+ T cells before ATI. Thus, the GI tract may be an initial source of rebound virus, but as ATI progresses, viral reactivation in other tissues likely contributes to the composition of plasma virus. Our study provides potentially novel insight into the features of viral rebound in pediatric infection and highlights the application of a noninvasive technique to monitor areas of HIV-1 expression in children.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Simian Acquired Immunodeficiency Syndrome/virology , Viremia/etiology , Animals , Female , Macaca , Male , Viremia/pathology
12.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: mdl-33177194

ABSTRACT

Daily burden and clinical toxicities associated with antiretroviral therapy (ART) emphasize the need for alternative strategies to induce long-term human immunodeficiency virus (HIV) remission upon ART cessation. Broadly neutralizing antibodies (bNAbs) can both neutralize free virions and mediate effector functions against infected cells and therefore represent a leading immunotherapeutic approach. To increase potency and breadth, as well as to limit the development of resistant virus strains, it is likely that bNAbs will need to be administered in combination. It is therefore critical to identify bNAb combinations that can achieve robust polyfunctional antiviral activity against a high number of HIV strains. In this study, we systematically assessed the abilities of single bNAbs and triple bNAb combinations to mediate robust polyfunctional antiviral activity against a large panel of cross-clade simian-human immunodeficiency viruses (SHIVs), which are commonly used as tools for validation of therapeutic strategies targeting the HIV envelope in nonhuman primate models. We demonstrate that most bNAbs are capable of mediating both neutralizing and nonneutralizing effector functions against cross-clade SHIVs, although the susceptibility to V3 glycan-specific bNAbs is highly strain dependent. Moreover, we observe a strong correlation between the neutralization potencies and nonneutralizing effector functions of bNAbs against the transmitted/founder SHIV CH505. Finally, we identify several triple bNAb combinations comprising of CD4 binding site-, V2-glycan-, and gp120-gp41 interface-targeting bNAbs that are capable of mediating synergistic polyfunctional antiviral activities against multiple clade A, B, C, and D SHIVs.IMPORTANCE Optimal bNAb immunotherapeutics will need to mediate multiple antiviral functions against a broad range of HIV strains. Our systematic assessment of triple bNAb combinations against SHIVs will identify bNAbs with synergistic, polyfunctional antiviral activity that will inform the selection of candidate bNAbs for optimal combination designs. The identified combinations can be validated in vivo in future passive immunization studies using the SHIV challenge model.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Broadly Neutralizing Antibodies/therapeutic use , HIV Antibodies/therapeutic use , Mutation , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibody-Dependent Cell Cytotoxicity , Humans , Immunization, Passive , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/drug effects , env Gene Products, Human Immunodeficiency Virus/genetics
14.
J Virol ; 95(2)2020 12 22.
Article in English | MEDLINE | ID: mdl-33087463

ABSTRACT

Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) continues to cause new pediatric cases of infection through breastfeeding, a setting where it is not always possible to initiate early antiretroviral therapy (ART). Without novel interventions that do not rely on daily ART, HIV-1-infected children face lifelong medications to control infection. A detailed analysis of virus persistence following breast milk transmission of HIV-1 and ART has not been performed. Here, we used infant rhesus macaques orally infected with simian/human immunodeficiency virus (SHIV) (SHIV.C.CH505) to identify cellular and anatomical sites of virus persistence under ART. Viral DNA was detected at similar levels in blood and tissue CD4+ T cells after a year on ART, with virus in blood and lymphoid organs confirmed to be replication competent. Viral RNA/DNA ratios were elevated in rectal CD4+ T cells compared to those of other sites (P ≤ 0.0001), suggesting that the gastrointestinal tract is an active site of virus transcription during ART-mediated suppression of viremia. SHIV.C.CH505 DNA was detected in multiple CD4+ T cell subsets, including cells with a naive phenotype (CD45RA+ CCR7+ CD95-). While the frequency of naive cells harboring intact provirus was lower than in memory cells, the high abundance of naive cells in the infant CD4+ T cell pool made them a substantial source of persistent viral DNA (approximately 50% of the total CD4+ T cell reservoir), with an estimated 1:2 ratio of intact provirus to total viral DNA. This viral reservoir profile broadens our understanding of virus persistence in a relevant infant macaque model and provides insight into targets for cure-directed approaches in the pediatric population.IMPORTANCE Uncovering the sanctuaries of the long-lived HIV-1 reservoir is crucial to develop cure strategies. Pediatric immunity is distinct from that of adults, which may alter where the reservoir is established in infancy. Thus, it is important to utilize pediatric models to inform cure-directed approaches for HIV-1-infected children. We used an infant rhesus macaque model of HIV-1 infection via breastfeeding to identify key sites of viral persistence under antiretroviral therapy (ART). The gastrointestinal tract was found to be a site for low-level viral transcription during ART. We also show that naive CD4+ T cells harbored intact provirus and were a major contributor to blood and lymphoid reservoir size. This is particularly striking, as memory CD4+ T cells are generally regarded as the main source of latent HIV/simian immunodeficiency virus (SIV) infection of adult humans and rhesus macaques. Our findings highlight unique features of reservoir composition in pediatric infection that should be considered for eradication efforts.


Subject(s)
Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , HIV Infections/veterinary , Macaca mulatta , Monkey Diseases/virology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Administration, Oral , Animals , Animals, Newborn , DNA, Viral/analysis , Disease Reservoirs , Female , HIV Infections/immunology , HIV Infections/transmission , HIV-1 , Male , Monkey Diseases/immunology , Monkey Diseases/transmission , RNA, Viral/analysis , Reassortant Viruses/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Viral Load
15.
Curr HIV/AIDS Rep ; 17(3): 237-248, 2020 06.
Article in English | MEDLINE | ID: mdl-32356090

ABSTRACT

PURPOSE OF REVIEW: In the absence of antiretroviral therapy (ART), more than 50% of perinatally HIV-infected children die by 2 years of age. Early ART from infancy is therefore a global recommendation and significantly improves immune health, child survival, and disease outcome. However, even early treatment does not prevent or eradicate the latent reservoir necessitating life-long ART. Adherence to life-long ART is challenging for children and longstanding ART during chronic HIV infection led to higher risks of non-AIDS co-morbidities and virologic failure in infected children. Thus, HIV-infected children are an important population for consideration for immune-based interventions to achieve ART-free remission and functional cure. This review summarizes how the uniqueness of the early life immune system can be harnessed for the development of ART-free remission and functional cure, which means complete virus control in absence of ART. In addition, recent advances in therapeutics in the HIV cure field and their potential for the treatment of pediatric HIV infections are discussed. RECENT FINDINGS: Preclinical studies and clinical trials demonstrated that immune-based interventions target HIV replication, limit size of virus reservoir, maintain virus suppression, and delay time to virus rebound. However, these studies have been performed so far only in carefully selected HIV-infected adults, highlighting the need to evaluate the efficacy of immune-based therapeutics in HIV-infected children and to design interventions tailored to the early life maturing immune system. Immune-based therapeutics alone or in combination with ART should be actively explored as potential strategies to achieve viral remission and functional cure in HIV-infected pediatric populations.


Subject(s)
Anti-Retroviral Agents/therapeutic use , HIV Infections/drug therapy , Immunotherapy/methods , Antiretroviral Therapy, Highly Active , Child , Child, Preschool , Female , Humans , Infectious Disease Transmission, Vertical , Pregnancy , Pregnancy Complications, Infectious , Viral Load/drug effects
16.
Front Immunol ; 10: 816, 2019.
Article in English | MEDLINE | ID: mdl-31057546

ABSTRACT

Lymphatic and blood vessels are formed by specialized lymphatic endothelial cells (LEC) and blood endothelial cells (BEC), respectively. These endothelial populations not only form peripheral tissue vessels, but also critical supporting structures in secondary lymphoid organs, particularly the lymph node (LN). Lymph node LEC (LN-LEC) also have been shown to have important immunological functions that are not observed in LEC from tissue lymphatics. LN-LEC can maintain peripheral tolerance through direct presentation of self-antigen via MHC-I, leading to CD8 T cell deletion; and through transfer of self-antigen to dendritic cells for presentation via MHC-II, resulting in CD4 T cell anergy. LN-LEC also can capture and archive foreign antigens, transferring them to dendritic cells for maintenance of memory CD8 T cells. The molecular basis for these functional elaborations in LN-LEC remain largely unexplored, and it is also unclear whether blood endothelial cells in LN (LN-BEC) might express similar enhanced immunologic functionality. Here, we used RNA-Seq to compare the transcriptomic profiles of freshly isolated murine LEC and BEC from LN with one another and with freshly isolated LEC from the periphery (diaphragm). We show that LN-LEC, LN-BEC, and diaphragm LEC (D-LEC) are transcriptionally distinct from one another, demonstrating both lineage and tissue-specific functional specializations. Surprisingly, tissue microenvironment differences in gene expression profiles were more numerous than those determined by endothelial cell lineage specification. In this regard, both LN-localized endothelial cell populations show a variety of functional elaborations that suggest how they may function as antigen presenting cells, and also point to as yet unexplored roles in both positive and negative regulation of innate and adaptive immune responses. The present work has defined in depth gene expression differences that point to functional specializations of endothelial cell populations in different anatomical locations, but especially the LN. Beyond the analyses provided here, these data are a resource for future work to uncover mechanisms of endothelial cell functionality.


Subject(s)
Blood Vessels/cytology , Endothelial Cells/physiology , Lymph Nodes/cytology , Lymphatic Vessels/cytology , Transcriptome , Animals , Antigen Presentation , Cell Adhesion Molecules/metabolism , Cellular Microenvironment , Chemokines/metabolism , Diaphragm/cytology , Endothelial Cells/immunology , Extracellular Matrix/metabolism , Mice , Mice, Inbred C57BL , RNA-Seq , Signal Transduction
17.
Front Immunol ; 10: 1033, 2019.
Article in English | MEDLINE | ID: mdl-31134089

ABSTRACT

Until a few years ago, lymphatic vessels and lymphatic endothelial cells (LEC) were viewed as part of a passive conduit for lymph and immune cells to reach lymph nodes (LN). However, recent work has shown that LEC are active immunological players whose interaction with dendritic cells and T cells is of important immunomodulatory relevance. While the immunological interaction between LEC and other immune cells has taken a center stage, molecular analysis of LEC antigen processing and presentation machinery is still lagging. Herein we review the current knowledge of LEC MHC I and MHC II antigen processing and presentation pathways, Including the role of LEC in antigen phagocytosis, classical, and non-classical MHC II presentation, proteasome processing and MHC I presentation, and cross-presentation. The ultimate goal is to provide an overview of the LEC antigen processing and presentation machinery that constitutes the molecular basis for their role in MHC I and MHC II-restricted immune responses.


Subject(s)
Antigen Presentation/immunology , Antigens/immunology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Lymphatic Vessels/immunology , Lymphatic Vessels/metabolism , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Antigens/metabolism , Autophagy , Biological Transport , Costimulatory and Inhibitory T-Cell Receptors/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Host-Pathogen Interactions/immunology , Humans , Phagocytosis/immunology , Signal Transduction
18.
Vet Immunol Immunopathol ; 163(3-4): 134-45, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25540877

ABSTRACT

The lymphatic endothelium (LE) serves as a conduit for transport of immune cells and soluble antigens from peripheral tissues to draining lymph nodes (LNs), contributing to development of host immune responses and possibly dissemination of microbes. Lymphatic endothelial cells (LECs) are major constituents of the lymphatic endothelium. These specialized cells could play important roles in initiation of host innate immune responses through sensing of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), including toll-like receptors (TLRs). LECs secrete pro-inflammatory cytokines and chemokines to create local inflammatory conditions for recruitment of naïve antigen presenting cells (APCs) such as dendritic cells (DCs) to sites of infection and/or vaccine administration. In this study, we examined the innate immune potential of primary LEC populations derived from multiple tissues of an animal model for human infectious diseases - the ferret. We generated a total of six primary LEC populations from lung, tracheal, and mesenteric LN tissues from three different ferrets. Standard RT-PCR characterization of these primary LECs showed that they varied in their expression of LEC markers. The ferret LECs were examined for their ability to respond to poly I:C (TLR3 and RIG-I ligand) and other known TLR ligands as measured by production of proinflammatory cytokine (IFNα, IL6, IL10, Mx1, and TNFα) and chemokine (CCL5, CCL20, and CXCL10) mRNAs using real time RT-PCR. Poly I:C exposure induced robust proinflammatory responses by all of the primary ferret LECs. Chemotaxis was performed to determine the functional activity of CCL20 produced by the primary lung LECs and showed that the LEC-derived CCL20 was abundant and functional. Taken together, our results continue to reveal the innate immune potential of primary LECs during pathogen-host interactions and expand our understanding of the roles LECs might play in health and disease in animal models.


Subject(s)
Endothelial Cells/cytology , Ferrets/physiology , Animals , Biomarkers , Cell Culture Techniques , Chemokine CCL20/genetics , Chemokine CCL20/metabolism , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , Endothelial Cells/physiology , Female , Gene Expression Regulation/immunology , Gene Expression Regulation/physiology , Lung , Phylogeny , Toll-Like Receptors/metabolism
19.
mBio ; 5(5): e01277-14, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25182322

ABSTRACT

UNLABELLED: Kaposi's sarcoma (KS) is an unusual neoplasia wherein the tumor consists primarily of endothelial cells infected with human herpesvirus 8 (HHV-8; Kaposi's sarcoma-associated herpesvirus) that are not fully transformed but are instead driven to excess proliferation by inflammatory and angiogenic factors. This oncogenic process has been postulated but unproven to depend on a paracrine effect of an abnormal excess of host cytokines and chemokines produced by HHV-8-infected B lymphocytes. Using newly developed measures for intracellular detection of lytic cycle proteins and expression of cytokines and chemokines, we show that HHV-8 targets a range of naive B cell, IgM memory B cell, and plasma cell-like populations for infection and induction of interleukin-6, tumor necrosis factor alpha, macrophage inhibitory protein 1α, macrophage inhibitory protein 1ß, and interleukin-8 in vitro and in the blood of HHV-8/HIV-1-coinfected subjects with KS. These B cell lineage subsets that support HHV-8 infection are highly polyfunctional, producing combinations of 2 to 5 of these cytokines and chemokines, with greater numbers in the blood of subjects with KS than in those without KS. Our study provides a new paradigm of B cell polyfunctionality and supports a key role for B cell-derived cytokines and chemokines produced during HHV-8 infection in the development of KS. IMPORTANCE: Kaposi's sarcoma (KS) is the most common cancer in HIV-1-infected persons and is caused by one of only 7 human cancer viruses, i.e., human herpesvirus 8 (HHV-8). It is unclear how this virus causes neoplastic transformation. Development and outgrowth of endothelial cell lesions characteristic of KS are hypothesized to be dependent on virus replication and multiple immune mediators produced by the KS cells and inflammatory cells, yet the roles of these viral and cell factors have not been defined. The present study advances our understanding of KS in that it supports a central role for HHV-8 infection of B cells inducing multiple cytokines and chemokines that can drive development of the cancer. Notably, HIV-1-infected individuals who developed KS had greater numbers of such HHV-8-infected, polyfunctional B cells across a range of B cell phenotypic lineages than did HHV-8-infected persons without KS. This intriguing production of polyfunctional immune mediators by B cells serves as a new paradigm for B cell function and classification.


Subject(s)
B-Lymphocytes/virology , Herpesvirus 8, Human/physiology , Sarcoma, Kaposi/virology , B-Lymphocytes/cytology , Cell Line , Cell Proliferation/physiology , Chemokines/metabolism , Cytokines/metabolism , DNA, Viral/genetics , Humans , Immunoglobulin M/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Microarray Analysis , Tumor Necrosis Factor-alpha/metabolism , Virus Replication
20.
mBio ; 5(3): e01031-13, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24781743

ABSTRACT

ABSTRACT HIV-1-infected nonprogressors (NP) inhibit disease progression for years without antiretroviral therapy. Defining the mechanisms for this resistance to disease progression could be important in determining strategies for controlling HIV-1 infection. Here we show that two types of professional antigen-presenting cells (APC), i.e., dendritic cells (DC) and B lymphocytes, from NP lacked the ability to mediate HIV-1 trans infection of CD4(+) T cells. In contrast, APC from HIV-1-infected progressors (PR) and HIV-1-seronegative donors (SN) were highly effective in mediating HIV-1 trans infection. Direct cis infection of T cells with HIV-1 was comparably efficient among NP, PR, and SN. Lack of HIV-1 trans infection in NP was linked to lower cholesterol levels and an increase in the levels of the reverse cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) in APC but not in T cells. Moreover, trans infection mediated by APC from NP could be restored by reconstitution of cholesterol and by inhibiting ABCA1 by mRNA interference. Importantly, this appears to be an inherited trait, as it was evident in APC obtained from NP prior to their primary HIV-1 infection. The present study demonstrates a new mechanism wherein enhanced lipid metabolism in APC results in remarkable control of HIV-1 trans infection that directly relates to lack of HIV-1 disease progression. IMPORTANCE HIV-1 can be captured by antigen-presenting cells (APC) such as dendritic cells and transferred to CD4 helper T cells, which results in greatly enhanced viral replication by a mechanism termed trans infection. A small percentage of HIV-1-infected persons are able to control disease progression for many years without antiretroviral therapy. In our study, we linked this lack of disease progression to a profound inability of APC from these individuals to trans infect T cells. This effect was due to altered lipid metabolism in their APC, which appears to be an inherited trait. These results provide a basis for therapeutic interventions to control of HIV-1 infection through modulation of cholesterol metabolism.


Subject(s)
Cholesterol/metabolism , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/virology , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Case-Control Studies , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/virology , Disease Progression , Genotype , HIV Infections/genetics , HIV Infections/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Mutation , Receptors, CCR5/genetics , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...