Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mutat Res ; 825: 111796, 2022.
Article in English | MEDLINE | ID: mdl-36007462

ABSTRACT

Royal jelly (RJ) is a creamy white-yellow liquid that is secreted by the mandibular and hypopharyngeal glands of bees to nourish the larvae. RJ has gained increasing interest in recent years owing to its antioxidant potential. However, little is known about adequate RJ dosing and its effects on genetic material. Thus, the aim of this study was to evaluate the in vivo effects of RJ on genotoxicity and mutagenicity induced by the alkylating agent methyl methanesulfonate (MMS). In this study, 3-month-old Swiss albino male mice (N = 66) were divided into 11 groups for experimentation. Experiments were performed by administering lyophilized RJ (150 mg/kg, 300 mg/kg, and 1000 mg/kg) or water via gavage as pre- and posttreatment processes with the alkylating agent MMS. After treatment, blood samples were collected from the mice via an incision at the end of the tail to conduct comet assays at times of 24 h and 48 h posttreatment. The mice were then euthanized to remove the bone marrow for a micronucleus test. Overall, regardless of dose, RJ did not exhibit genotoxic, mutagenic activity and the administration of high doses, mainly in the form of posttreatment, presented antigenotoxic and antimutagenic actions. Further, a dose-response correlation was observed in the RJ posttreatment groups. These results demonstrate that RJ administration was effective in reversing the damage caused by the alkylating agent MMS.


Subject(s)
Alkylating Agents , DNA Damage , Mice , Bees , Animals , Alkylating Agents/toxicity , Fatty Acids/pharmacology , Comet Assay , Methyl Methanesulfonate/toxicity , Mutagens/toxicity
2.
Drug Chem Toxicol ; 45(3): 1066-1072, 2022 May.
Article in English | MEDLINE | ID: mdl-32811197

ABSTRACT

The Brazil nut (Bertholletia excelsa, H.B.K.) originating from the Amazon region is one of the richest known sources of selenium (Se), a micronutrient that is essential and required for optimal physiological functioning. This mineral presents several health benefits, including improvement of the redox cellular status and maintenance of genomic stability. Knowing that type 2 diabetes mellitus (T2D) is strongly linked to oxidative stress and consequently DNA damage, the aim of this study was to assess the ex vivo antioxidative effects of Se through Brazil nut consumption and its potential in preventing oxidative DNA damage induced by H2O2. In order to accomplish this, the Comet assay (single-cell gel electrophoresis) was used to measure DNA damage in peripheral blood cells harvested before and after supplementation with Brazil nut. Comet assay was also applied ex vivo to measure the potential of Se to prevent oxidative damage to DNA induced by H2O2 in blood of type 2 diabetes patients collected before and after six months of supplementation with Brazil nut. We found that supplementation with Brazil nuts significantly increased serum Se levels. Furthermore, we observed a significant increase in fasting blood glucose after six months of consuming Brazil nuts; however, no significant effect was observed on the levels of glycated hemoglobin. Finally, we noticed that the cells were more resistant to H2O2-induced DNA damage after six months of supplementation with Brazil nut. Thus, consumption of Brazil nuts could decrease oxidative DNA damage in T2D patients, probably through the antioxidative effects of Se.


Subject(s)
Bertholletia , Diabetes Mellitus, Type 2 , Selenium , Humans , Hydrogen Peroxide/pharmacology , Oxidative Stress , Selenium/pharmacology
3.
Eur J Sport Sci ; 21(7): 1073-1082, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32713261

ABSTRACT

We evaluated the impact of maximal exercise on oxidative stress and DNA damage in peripheral blood mononuclear cells (PBMC) from sedentary and exercised lean and obese men. PBMC were collected before, immediately and 1-h after exercise and exposed to hydrogen peroxide (H2O2; 25 and 50 µM, 4 h). A leukocytosis was induced by maximal exercise immediately and 1-h after exercise in all groups. However, a lymphopenia was observed 1-h after exercise in the Sedentary obese group. In the control condition, low DNA damage index concomitant to increases in intracellular glutathione content (GSH) was identified immediately after exercise in all groups. However, higher DNA damage index and lipid peroxidation occurred 1-h after the bout in Sedentary and Exercised Obese groups. PBMC exposed to both H2O2 25 and 50 µM experienced higher DNA damage and lipid peroxidation index immediately after exercise in all groups. Both lipid peroxidation and DNA damage index remained higher in PBMC of Sedentary Lean, Sedentary Obese, and Exercised obese groups obtained 1-h after exercise in both H2O2 25 and 50 µM, with the highest values identified in PBMC from Sedentary Obese group. However, increases in GSH content were identified in treated PBMC from sedentary and exercised lean groups as well as exercised obese group 1-h after exercise. Habitual exercise confers increased resistance of PBMC to DNA damage induced by oxidative stress, reducing the detrimental effects of obesity.Keywords: Exercise, physical activity, DNA damage, obesity, mutagenesis, oxidative stress.


Subject(s)
DNA Damage , Exercise/physiology , Leukocytes, Mononuclear/metabolism , Obesity/genetics , Thinness/genetics , Adult , Glutathione/metabolism , Humans , Lipid Peroxidation , Male , Mutagenesis , Obesity/metabolism , Oxidative Stress , Thinness/metabolism , Young Adult
4.
Article in English | MEDLINE | ID: mdl-30293597

ABSTRACT

AIM: To evaluate the effects of acute fish oil supplementation (FOS) in DNA damage, lymphocyte phenotype and cytokines production after strenuous exercise in obese individuals. METHODS: Sixteen sedentary obese (BMI >30.0 to <35.0 kg/m²) men performed two sessions of exhaustive exercise and consumed 2000 mg of either placebo or fish oil one hour before the exercise session; trials were separated by 14 days. Peripheral blood mononuclear cells were collected pre, immediately after and 1 h after both exercise sessions and stimulated in vitro with 2% phytohemagglutinin for cytokines secretion (IL-6, IL-8, TNF-α). Analysis of DNA damage index on total lymphocytes and the peripheral frequency of T helper CD4+ cells, T cytotoxic CD8+ cells, and CD19+ B cells were also performed. RESULTS: FOS prevented the increase in serum cortisol levels and the production of TNF-α and IL-8 after strenuous exercise. The DNA damage index decreased 1 h after exercise in FOS trial. Moreover, a lymphocytosis, i.e. increases in the frequency of CD4+ and CD8+ T cells was observed immediately after exercise bout in both trials. Moreover, FOS prevented the decrease in CD8+ T cells below to baseline value 1 h after strenuous exercise. CONCLUSION: Acute supplementation with fish oil attenuates the proinflammatory cytokine response and diminished the DNA damage after strenuous exercise in obese individuals, suggesting a possible protective effect against the exacerbation of systemic damage induced by exhaustive exercise in obese individuals.


Subject(s)
Dietary Supplements , Exercise , Fish Oils/administration & dosage , Inflammation/diet therapy , Adult , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , DNA Damage/drug effects , Humans , Hydrocortisone/blood , Inflammation/blood , Inflammation/pathology , Interleukin-6/blood , Interleukin-8/blood , Leukocytes, Mononuclear/drug effects , Male , Obesity , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...