Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 199: 111603, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31473431

ABSTRACT

Photodynamic therapy (PDT) is used for killing of malignant cells in tumors including brain cancer. It can also damage normal neurons and glial cells. Nitric oxide (NO) is known to control PDT-induced cell death. To study the mechanisms that regulate NO generation in photosensitized neurons and glial cells, we used a simple model object - isolated crayfish mechanoreceptor that consists of a single sensory neuron surrounded by glial cells. PDT induced NO generation in glial cells, neuronal dendrites, and, less, in soma and axon. Using modulators of the cytosolic Ca2+ level and nuclear factor-kappa B (NF-κB) activity, we showed that Ca2+ and NF-κB regulate NO generation in the photosensitized neurons and glia. Actually, NO production was stimulated by 4-fold cadmium chloride (CdCl2) concentration in the saline, Ca2+ ionophore ionomycine, or inhibition of Ca2+-ATPase in the endoplasmic reticulum by 2,5-ditert-butylbenzene-1,4-diol (tBuBHQ). Oppositely, CdCl2 or nifedipine, blockers of Ca2+ channels in the plasma membrane, decreased NO generation. NO production was also inhibited by S-methylthiouronium sulfate (SMT), inhibitor of Ca2+-independent inducible NO synthase. SMT also prevented the stimulation of PDT-induced NO generation by NF-κB activator prostratin. This suggests the involvement of both Ca2+-dependent neuronal NO synthase and Ca2+-independent inducible NO synthase, which is regulated by NF-κB, in NO production in the crayfish neurons and glia.


Subject(s)
Cadmium Chloride/metabolism , NF-kappa B/metabolism , Neuroglia/radiation effects , Neurons/metabolism , Nitric Oxide/metabolism , Photosensitizing Agents/metabolism , Adenosine Triphosphatases/metabolism , Animals , Apoptosis/radiation effects , Astacoidea , Calcium Channels/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Nitric Oxide Synthase Type II/metabolism , Photochemotherapy
2.
Cell Rep ; 26(1): 11-17.e2, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30605668

ABSTRACT

Permeability transition (PT) is an increase in mitochondrial inner membrane permeability that can lead to a disruption of mitochondrial function and cell death. PT is responsible for tissue damage in stroke and myocardial infarction. It is caused by the opening of a large conductance (∼1.5 nS) channel, the mitochondrial PT pore (mPTP). We directly tested the role of the c-subunit of ATP synthase in mPTP formation by measuring channel activity in c-subunit knockout mitochondria. We found that the classic mPTP conductance was lacking in c-subunit knockout mitochondria, but channels sensitive to the PT inhibitor cyclosporine A could be recorded. These channels had a significantly lower conductance compared with the cyclosporine A-sensitive channels detected in parental cells and were sensitive to the ATP/ADP translocase inhibitor bongkrekic acid. We propose that, in the absence of the c-subunit, mPTP cannot be formed, and a distinct cyclosporine A-sensitive low-conductance channel emerges.


Subject(s)
Adenosine Triphosphate/metabolism , Cyclosporine/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Biological Transport , Humans , Mitochondrial Permeability Transition Pore
SELECTION OF CITATIONS
SEARCH DETAIL
...