Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 14(644): eabm8059, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35544596

ABSTRACT

Psoriasis is a widespread inflammatory skin disease affecting about 2% of the general population. Recently, treatments that specifically target key proinflammatory cytokines driving the disease have been developed to complement conventional therapies with unspecific antiproliferative or anti-inflammatory effects. Efficient monitoring of treatment efficacy in the context of precision medicine and the assessment of new therapeutics require accurate noninvasive readouts of disease progression. However, characterization of psoriasis treatment remains subjective based on visual and palpatory clinical assessment of features observed on the skin surface. We hypothesized that optoacoustic (photoacoustic) mesoscopy could offer label-free assessment of inflammation biomarkers, extracted from three-dimensional (3D) high-resolution images of the human skin, not attainable by other noninvasive methods. We developed a second-generation ultra-broadband optoacoustic mesoscopy system, featuring sub-10-µm resolution and advanced motion correction technology, and performed 80 longitudinal measurements of 20 psoriatic skin plaques in humans under conventional inpatient treatment or receiving biologics with concomitant topical corticosteroid treatment. Optoacoustic image analysis revealed inflammatory and morphological skin features that indicated treatment efficacy with sensitivity, accuracy, and precision that was not possible using clinical metrics. We identify 3D imaging biomarkers that reveal responses to treatment and offer the potential to facilitate disease and treatment characterization. Our findings suggest that optoacoustic mesoscopy may offer a method of choice for yielding both qualitative and quantitative evaluations of skin treatments that are inaccessible by other methods, potentially enabling optimized therapies and precision medicine in dermatology.


Subject(s)
Photoacoustic Techniques , Psoriasis , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Photoacoustic Techniques/methods , Psoriasis/diagnostic imaging , Psoriasis/drug therapy , Skin
2.
Nat Commun ; 13(1): 2803, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589757

ABSTRACT

Melanoma is associated with angiogenesis and vascular changes that may extend through the entire skin depth. Three-dimensional imaging of vascular characteristics in skin lesions could therefore allow diagnostic insights not available by conventional visual inspection. Raster-scan optoacoustic mesoscopy (RSOM) images microvasculature through the entire skin depth with resolutions of tens of micrometers; however, current RSOM implementations are too slow to overcome the strong breathing motions on the upper torso where melanoma lesions commonly occur. To enable high-resolution imaging of melanoma vasculature in humans, we accelerate RSOM scanning using an illumination scheme that is coaxial with a high-sensitivity ultrasound detector path, yielding 15 s single-breath-hold scans that minimize motion artifacts. We apply this Fast RSOM to image 10 melanomas and 10 benign nevi in vivo, showing marked differences between malignant and benign lesions, supporting the possibility to use biomarkers extracted from RSOM imaging of vasculature for lesion characterization to improve diagnostics.


Subject(s)
Melanoma , Photoacoustic Techniques , Humans , Imaging, Three-Dimensional , Melanoma/diagnostic imaging , Microvessels/diagnostic imaging , Photoacoustic Techniques/methods , Skin/blood supply
3.
Contact Dermatitis ; 83(3): 206-214, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32311105

ABSTRACT

BACKGROUND: Differentiation between irritant and allergic skin reactions in epicutaneous patch testing is based largely on subjective clinical criteria, with the risk of high intraobserver and interobserver variability. Novel dermatological imaging using optoacoustic mesoscopy allows quantitative three-dimensional assessment of microvascular biomarkers. OBJECTIVES: We investigated the potential of optoacoustic imaging to improve the precision of patch test evaluation. METHODS: Sixty-nine test reactions and 48 healthy skin sections in 52 patients with suspected type IV allergy were examined using raster-scan optoacoustic mesoscopy. RESULTS: We identified biomarkers from the optoacoustic images. Allergic reactions were associated with higher fragmentation of skin vasculature than irritant reactions (19.5 ± 9.7 vs 14.3 ± 3.7 fragments/100 pixels2 ; P < .05), as well as lower ratio of low- to high-frequency acoustic signals (1.6 ± 0.5 vs 2.0 ± 0.6, P < .05). Allergic reactions graded "++" showed higher vessel fragmentation than reactions graded "+" (25.4 ± 13.2 vs 17.1 ± 6.5 fragments/100 pixels2 ; P < .05). A linear model combining the biomarkers fragmentation and frequency ratio could differentiate allergic from irritant test reactions with an area under the receiving operator characteristic curve of 0.80 (95% confidence interval 0.64-0.91), reaching a sensitivity of 81% and specificity of 63%. CONCLUSIONS: Optoacoustic mesoscopy shows potential to help in differentiating between allergic and irritant test reactions based on novel biomarkers that may reflect vasodilation, vessel tortuosity, and edema.


Subject(s)
Dermatitis, Allergic Contact/diagnostic imaging , Patch Tests/instrumentation , Photoacoustic Techniques/methods , Skin/diagnostic imaging , Adult , Case-Control Studies , Dermatology/methods , Female , Humans , Middle Aged
4.
Nat Biomed Eng ; 4(3): 286-297, 2020 03.
Article in English | MEDLINE | ID: mdl-32165736

ABSTRACT

The monitoring of vascular-targeted therapies using magnetic resonance imaging, computed tomography or ultrasound is limited by their insufficient spatial resolution. Here, by taking advantage of the intrinsic optical properties of haemoglobin, we show that raster-scanning optoacoustic mesoscopy (RSOM) provides high-resolution images of the tumour vasculature and of the surrounding tissue, and that the detection of a wide range of ultrasound bandwidths enables the distinction of vessels of differing size, providing detailed insights into the vascular responses to vascular-targeted therapy. Using RSOM to examine the responses to vascular-targeted photodynamic therapy in mice with subcutaneous xenografts, we observed a substantial and immediate occlusion of the tumour vessels followed by haemorrhage within the tissue and the eventual collapse of the entire vasculature. Using dual-wavelength RSOM, which distinguishes oxyhaemoglobin from deoxyhaemoglobin, we observed an increase in oxygenation of the entire tumour volume immediately after the application of the therapy, and a second wave of oxygen reperfusion approximately 24 h thereafter. We also show that RSOM enables the quantification of differences in neoangiogenesis that predict treatment efficacy.


Subject(s)
Diagnostic Imaging/methods , Neovascularization, Pathologic/diagnosis , Photoacoustic Techniques/methods , Ultrasonography/methods , Vascular Neoplasms/diagnostic imaging , Animals , Brain/diagnostic imaging , Cerebral Ventricle Neoplasms/diagnostic imaging , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/pathology , Craniotomy , Disease Models, Animal , Endothelin-1 , Epinephrine , Female , Heterografts , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Lasers , Mice , Mice, Inbred BALB C , Oxygen , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/pathology , Vascular Neoplasms/pathology , Vasoconstriction
5.
Opt Lett ; 44(17): 4119-4122, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31465343

ABSTRACT

Detailed assessment of skin conditions or the efficacy of skin treatments could greatly benefit from noninvasively assessing the distribution of cutaneous and subcutaneous structures and biomolecules. We considered ultrawideband raster scan optoacoustic mesoscopy with an extended wavelength range from visible to short-wave infrared and observed previously unseen high-resolution images of lipids colocalized with water, melanin, and hemoglobin distribution in human skin. Based on this contrast, the technique resolves subcutaneous fat, the pilosebaceous unit with complete hair strand and bulb, dermal microvasculature, and epidermal structures. We further visualize melanoidins that form via the Maillard reaction in the ultrathin stratum corneum layer, analyze their absorption spectrum, and separate them from the melanin layer. The suggested method may allow novel interrogation of skin conditions, possibly impacting diagnostics and medical and cosmetic treatments.


Subject(s)
Infrared Rays , Optical Phenomena , Photoacoustic Techniques , Skin/diagnostic imaging , Adipose Tissue/cytology , Hemoglobins/metabolism , Humans , Lipid Metabolism , Melanins/metabolism , Skin/cytology , Skin/metabolism , Water/metabolism
6.
J Funct Biomater ; 10(2)2019 May 13.
Article in English | MEDLINE | ID: mdl-31086048

ABSTRACT

Blood-derived growth factor preparations have long been employed to improve perfusion and aid tissue repair. Among these, platelet-rich plasma (PRP)-based therapies have seen the widest application, albeit with mixed clinical results to date. Hypoxia-preconditioned blood products present an alternative to PRP, by comprising the complete wound healing factor-cascade, i.e., hypoxia-induced peripheral blood cell signaling, in addition to platelet-derived factors. This study set out to characterize the preparation of hypoxia preconditioned serum (HPS), and assess the utility of HPS-fibrin hydrogels as vehicles for controlled factor delivery. Our findings demonstrate the positive influence of hypoxic incubation on HPS angiogenic potential, and the individual variability of HPS angiogenic factor concentration. HPS-fibrin hydrogels can rapidly retain HPS factor proteins and gradually release them over time, while both functions appear to depend on the fibrin matrix mass. This offers a means of controlling factor retention/release, through adjustment of HPS fibrinogen concentration, thus allowing modulation of cellular angiogenic responses in a growth factor dose-dependent manner. This study provides the first evidence that HPS-fibrin hydrogels could constitute a new generation of autologous/bioactive injectable compositions that provide biochemical and biomaterial signals analogous to those mediating physiological wound healing. This therefore establishes a rational foundation for their application towards biomimetic tissue regeneration.

7.
IEEE Trans Med Imaging ; 38(6): 1340-1346, 2019 06.
Article in English | MEDLINE | ID: mdl-30676947

ABSTRACT

Raster-scan optoacoustic mesoscopy (RSOM) offers high-resolution non-invasive insights into skin pathophysiology, which holds promise for disease diagnosis and monitoring in dermatology and other fields. However, RSOM is quite vulnerable to vertical motion of the skin, which can depend on the part of the body being imaged. Motion correction algorithms have already been proposed, but they are not fully automated, they depend on anatomical segmentation pre-processing steps that might not be performed successfully, and they are not site- specific. Here, we determined for the first time the magnitude of the micrometric vertical skin displacements at different sites on the body that affect RSOM. The quantifi- cation of motion allowed us to develop a site-specific correction algorithm. The algorithm is fully automated and does not need prior anatomical information. We found that the magnitude of the vertical motion depends strongly on the site of imaging and is caused by breathing, heart beating, and arterial pulsation. The developed algorithm resulted in more than 2-fold improvement in the signal-to-noise ratio of the reconstructed images at every site tested. Proposing an effective automated motion correction algorithm paves the way for realizing the full clinical potential of RSOM.


Subject(s)
Image Processing, Computer-Assisted/methods , Photoacoustic Techniques/methods , Skin/diagnostic imaging , Algorithms , Humans , Microvessels/diagnostic imaging , Movement/physiology , Reproducibility of Results , Skin/blood supply
8.
Photoacoustics ; 10: 31-37, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29988835

ABSTRACT

Nailfold capillaroscopy, based on bright-field microscopy, is widely used to diagnose systemic sclerosis (SSc). However it cannot reveal information about venules and arterioles lying deep under the nailfold, nor can it provide detailed data about surface microvasculature when the skin around the nail is thick. These limitations reflect the fact that capillaroscopy is based on microscopy methods whose penetration depth is restricted to about 200 µm. We investigated whether ultra-wideband raster-scan optoacoustic mesoscopy (UWB-RSOM) can resolve small capillaries of the nailfold in healthy volunteers and compared the optoacoustic data to conventional capillaroscopy examinations. We quantified UWB-RSOM-resolved capillary density and capillary diameter as features that relate to SSc biomarkers, and we obtained the first three-dimensional, in vivo images of the deeper arterioles and venules. These results establish the potential of UWB-RSOM for analyzing SSc-relevant markers.

9.
J Biophotonics ; 11(11): e201700359, 2018 11.
Article in English | MEDLINE | ID: mdl-29573174

ABSTRACT

The aim of this study was to explore the unique imaging abilities of optoacoustic mesoscopy to visualize skin structures and microvasculature with the view of establishing a robust approach for monitoring heat-induced hyperemia in human skin in vivo. Using raster-scan optoacoustic mesoscopy (RSOM), we investigated whether optoacoustic (photoacoustic) mesoscopy can identify changes in skin response to local heating at microvasculature resolution in a cross-sectional fashion through skin in the human forearm. We visualized the heat-induced hyperemia for the first time with single-vessel resolution throughout the whole skin depth. We quantified changes in total blood volume in the skin and their correlation with local heating. In response to local heating, total blood volume increased 1.83- and 1.76-fold, respectively, in the volar and dorsal aspects of forearm skin. We demonstrate RSOM imaging of the dilation of individual vessels in the skin microvasculature, consistent with hyperemic response to heating at the skin surface. Our results demonstrate great potential of RSOM for elucidating the morphology, functional state and reactivity of dermal microvasculature, with implications for diagnostics and disease monitoring. Image: Cross-sectional view of skin microvasculature dilated in response to hyperthermia.


Subject(s)
Hot Temperature , Photoacoustic Techniques , Skin/blood supply , Vasodilation , Humans , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...