Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 19(35): 6691-6699, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37609884

ABSTRACT

We assess the ability of two light responsive kinesin motor clusters to drive dynamics of microtubule-based active nematics: opto-K401, a processive motor, and opto-K365, a non-processive motor. Measurements reveal an order of magnitude improvement in the contrast of nematic flow speeds between maximally- and minimally-illuminated states for opto-K365 motors when compared to opto-K401 construct. For opto-K365 nematics, we characterize both the steady-state flow and defect density as a function of applied light. We also examine the transient behavior as the system switches between steady-states upon changes in light intensities. Although nematic flows reach a steady state within tens of seconds, the defect density exhibits transient behavior for up to 10 minutes, showing a separation between small-scale active flows and system-scale structural states. Our work establishes an experimental platform that can exploit spatiotemporally-heterogeneous patterns of activity to generate targeted dynamical states.

2.
Rev Sci Instrum ; 93(9): 093701, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182480

ABSTRACT

Here we present a new, compact magnetic tweezers design that enables precise application of a wide range of dynamic forces to soft materials without the need to raise or lower the magnet height above the sample. This is achieved through the controlled rotation of the permanent magnet array with respect to the fixed symmetry axis defined by a custom-built iron yoke. These design improvements increase the portability of the device and can be implemented within existing microscope setups without the need for extensive modification of the sample holders or light path. This device is particularly well-suited to active microrheology measurements using either creep analysis, in which a step force is applied to a micron-sized magnetic particle that is embedded in a complex fluid, or oscillatory microrheology, in which the particle is driven with a periodic waveform of controlled amplitude and frequency. In both cases, the motions of the particle are measured and analyzed to determine the local dynamic mechanical properties of the material.


Subject(s)
Magnetics , Magnets , Iron , Magnetic Phenomena
3.
Soft Matter ; 18(9): 1825-1835, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35167642

ABSTRACT

Microtubule-based active matter provides insight into the self-organization of motile interacting constituents. We describe several formulations of microtubule-based 3D active isotropic fluids. Dynamics of these fluids is powered by three types of kinesin motors: a processive motor, a non-processive motor, and a motor which is permanently linked to a microtubule backbone. Another modification uses a specific microtubule crosslinker to induce bundle formation instead of a non-specific polymer depletant. In comparison to the already established system, each formulation exhibits distinct properties. These developments reveal the temporal stability of microtubule-based active fluids while extending their reach and the applicability.


Subject(s)
Longevity , Microtubules , Kinesins
4.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: mdl-35086931

ABSTRACT

We study a reconstituted composite system consisting of an active microtubule network interdigitated with a passive network of entangled F-actin filaments. Increasing the concentration of filamentous actin controls the emergent dynamics, inducing a transition from turbulent-like flows to bulk contractions. At intermediate concentrations, where the active stresses change their symmetry from anisotropic extensile to isotropic contracting, the composite separates into layered asters that coexist with the background turbulent fluid. Contracted onion-like asters have a radially extending microtubule-rich cortex that envelops alternating layers of microtubules and F-actin. These self-regulating structures undergo internal reorganization, which appears to minimize the surface area and maintain the ordered layering, even when undergoing aster merging events. Finally, the layered asters are metastable structures. Their lifetime, which ranges from minutes to hours, is encoded in the material properties of the composite. These results challenge the current models of active matter. They demonstrate self-organized dynamical states and patterns evocative of those observed in the cytoskeleton do not require precise biochemical regulation, but can arise from purely mechanical interactions of actively driven filamentous materials.


Subject(s)
Actins/metabolism , Microtubules/metabolism , Movement/physiology , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/physiology , Actins/chemistry , Cytoskeleton/physiology , Humans , Microtubules/chemistry , Microtubules/physiology , Muscle Contraction/physiology
5.
Phys Rev Lett ; 125(17): 178003, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33156652

ABSTRACT

An enticing feature of active materials is the possibility of controlling macroscale rheological properties through the activity of the microscopic constituents. Using a unique combination of microscopy and rheology we study three dimensional microtubule-based active materials whose autonomous flows are powered by a continually rearranging connected network. We quantify the relationship between the microscopic dynamics and the bulk mechanical properties of these nonequilibrium networks. Experiments reveal a surprising nonmonotonic viscosity that strongly depends on the relative magnitude of the rate of internally generated activity and the externally applied shear. A simple two-state mechanical model that accounts for both the solidlike and yielded fluidlike elements of the network accurately describes the rheological measurements.

6.
Biophys J ; 119(7): 1351-1358, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32918890

ABSTRACT

Large bottlebrush complexes formed from the polysaccharide hyaluronan (HA) and the proteoglycan aggrecan contribute to cartilage compression resistance and are necessary for healthy joint function. A variety of mechanical forces act on these complexes in the cartilage extracellular matrix, motivating the need for a quantitative description that links their structure and mechanical response. Studies using electron microscopy have imaged the HA-aggrecan brush but require adsorption to a surface, dramatically altering the complex from its native conformation. We use magnetic tweezers force spectroscopy to measure changes in extension and mechanical response of an HA chain as aggrecan monomers bind and form a bottlebrush. This technique directly measures changes undergone by a single complex with time and under varying solution conditions. Upon addition of aggrecan, we find a large swelling effect manifests when the HA chain is under very low external tension (i.e., stretching forces less than ∼1 pN). We use models of force-extension behavior to show that repulsion between the aggrecans induces an internal tension in the HA chain. Through reference to theories of bottlebrush polymer behavior, we demonstrate that the experimental values of internal tension are consistent with a polydisperse aggrecan population, likely caused by varying degrees of glycosylation. By enzymatically deglycosylating the aggrecan, we show that aggrecan glycosylation is the structural feature that causes HA stiffening. We then construct a simple stochastic binding model to show that variable glycosylation leads to a wide distribution of internal tensions in HA, causing variations in the mechanics at much longer length scales. Our results provide a mechanistic picture of how flexibility and size of HA and aggrecan lead to the brush architecture and mechanical properties of this important component of cartilage.


Subject(s)
Cartilage, Articular , Hyaluronic Acid , Aggrecans/metabolism , Cartilage, Articular/metabolism , Extracellular Matrix Proteins , Glycosylation , Hyaluronic Acid/metabolism , Lectins, C-Type/metabolism , Proteoglycans/metabolism
7.
J Chem Phys ; 149(16): 163328, 2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30384683

ABSTRACT

We present simulations of the force-extension curves of strong polyelectrolytes with varying intrinsic stiffness as well as specifically treating hyaluronic acid, a polyelectrolyte of intermediate stiffness. Whereas fully flexible polyelectrolytes show a high-force regime where extension increases nearly logarithmically with force, we find that the addition of even a small amount of stiffness alters the short-range structure and removes this logarithmic elastic regime. This further confirms that the logarithmic regime is a consequence of the short-ranged "wrinkles" in the flexible chain. As the stiffness increases, the force-extension curves tend toward and reach the wormlike chain behavior. Using the screened Coulomb potential and a simple bead-spring model, the simulations are able to reproduce the hyaluronic acid experimental force-extension curves for salt concentrations ranging from 1 to 500 mM. Furthermore, the simulation data can be scaled to a universal curve like the experimental data. The scaling analysis is consistent with the interpretation that, in the low-salt limit, the hyaluronic acid chain stiffness scales with salt with an exponent of -0.7, rather than either of the two main theoretical predictions of -0.5 and -1. Furthermore, given the conditions of the simulation, we conclude that this exponent value is not due to counterion condensation effects, as had previously been suggested.

8.
Phys Rev Lett ; 119(12): 127801, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-29341644

ABSTRACT

Bottle-brush polymers exhibit closely grafted side chains that interact by steric repulsion, thereby causing stiffening of the main polymer chain. We use single-molecule elasticity measurements of model brush polymers to quantify this effect. We find that stiffening is only significant on long length scales, with the main chain retaining flexibility on short scales. From the elasticity data, we extract an estimate of the internal tension generated by side-chain repulsion; this estimate is consistent with the predictions of blob-based scaling theories.

9.
Nucleic Acids Res ; 42(19): e150, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-25159617

ABSTRACT

Single-molecule manipulation (SMM) techniques use applied force, and measured elastic response, to reveal microscopic physical parameters of individual biomolecules and details of biomolecular interactions. A major hurdle in the application of these techniques is the labeling method needed to immobilize biomolecules on solid supports. A simple, minimally-perturbative labeling strategy would significantly broaden the possible applications of SMM experiments, perhaps even allowing the study of native biomolecular structures. To accomplish this, we investigate the use of functionalized locked nucleic acid (LNA) oligomers as biomolecular handles that permit sequence-specific binding and immobilization of DNA. We find these probes form bonds with DNA with high specificity but with varied stability in response to the direction of applied mechanical force: when loaded in a shear orientation, the bound LNA oligomers were measured to be two orders of magnitude more stable than when loaded in a peeling, or unzipping, orientation. Our results show that LNA provides a simple, stable means to functionalize dsDNA for manipulation. We provide design rules that will facilitate their use in future experiments.


Subject(s)
DNA/chemistry , Oligonucleotides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...