Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Intensive Care Med Exp ; 12(1): 54, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856861

ABSTRACT

BACKGROUND: Continuous monitoring of mitral annular plane systolic excursion (MAPSE) using transesophageal echocardiography (TEE) may improve the evaluation of left ventricular (LV) function in postoperative intensive care patients. We aimed to assess the utility of continuous monitoring of LV function using TEE and artificial intelligence (autoMAPSE) in postoperative intensive care patients. METHODS: In this prospective observational study, we monitored 50 postoperative intensive care patients for 120 min immediately after cardiac surgery. We recorded a set of two-chamber and four-chamber TEE images every five minutes. We defined monitoring feasibility as how often the same wall from the same patient could be reassessed, and categorized monitoring feasibility as excellent if the same LV wall could be reassessed in ≥ 90% of the total recordings. To compare autoMAPSE with manual measurements, we rapidly recorded three sets of repeated images to assess precision (least significant change), bias, and limits of agreement (LOA). To assess the ability to identify changes (trending ability), we compared changes in autoMAPSE with the changes in manual measurements in images obtained during the initiation of cardiopulmonary bypass as well as before and after surgery. RESULTS: Monitoring feasibility was excellent in most patients (88%). Compared with manual measurements, autoMAPSE was more precise (least significant change 2.2 vs 3.1 mm, P < 0.001), had low bias (0.4 mm), and acceptable agreement (LOA - 2.7 to 3.5 mm). AutoMAPSE had excellent trending ability, as its measurements changed in the same direction as manual measurements (concordance rate 96%). CONCLUSION: Continuous monitoring of LV function was feasible using autoMAPSE. Compared with manual measurements, autoMAPSE had excellent trending ability, low bias, acceptable agreement, and was more precise.

2.
Ultrasound Med Biol ; 50(6): 797-804, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38485534

ABSTRACT

OBJECTIVE: Evaluation of left ventricular (LV) function in critical care patients is useful for guidance of therapy and early detection of LV dysfunction, but the tools currently available are too time-consuming. To resolve this issue, we previously proposed a method for the continuous and automatic quantification of global LV function in critical care patients based on the detection and tracking of anatomical landmarks on transesophageal heart ultrasound. In the present study, our aim was to improve the performance of mitral annulus detection in transesophageal echocardiography (TEE). METHODS: We investigated several state-of-the-art networks for both the detection and tracking of the mitral annulus in TEE. We integrated the networks into a pipeline for automatic assessment of LV function through estimation of the mitral annular plane systolic excursion (MAPSE), called autoMAPSE. TEE recordings from a total of 245 patients were collected from St. Olav's University Hospital and used to train and test the respective networks. We evaluated the agreement between autoMAPSE estimates and manual references annotated by expert echocardiographers in 30 Echolab patients and 50 critical care patients. Furthermore, we proposed a prototype of autoMAPSE for clinical integration and tested it in critical care patients in the intensive care unit. RESULTS: Compared with manual references, we achieved a mean difference of 0.8 (95% limits of agreement: -2.9 to 4.7) mm in Echolab patients, with a feasibility of 85.7%. In critical care patients, we reached a mean difference of 0.6 (95% limits of agreement: -2.3 to 3.5) mm and a feasibility of 88.1%. The clinical prototype of autoMAPSE achieved real-time performance. CONCLUSION: Automatic quantification of LV function had high feasibility in clinical settings. The agreement with manual references was comparable to inter-observer variability of clinical experts.


Subject(s)
Anatomic Landmarks , Echocardiography, Transesophageal , Ventricular Function, Left , Humans , Echocardiography, Transesophageal/methods , Ventricular Function, Left/physiology , Anatomic Landmarks/diagnostic imaging , Female , Male , Aged , Middle Aged , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Mitral Valve/diagnostic imaging , Mitral Valve/physiopathology , Image Interpretation, Computer-Assisted/methods
3.
J Clin Monit Comput ; 38(2): 281-291, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38280975

ABSTRACT

We have developed a method to automatically assess LV function by measuring mitral annular plane systolic excursion (MAPSE) using artificial intelligence and transesophageal echocardiography (autoMAPSE). Our aim was to evaluate autoMAPSE as an automatic tool for rapid and quantitative assessment of LV function in critical care patients. In this retrospective study, we studied 40 critical care patients immediately after cardiac surgery. First, we recorded a set of echocardiographic data, consisting of three consecutive beats of midesophageal two- and four-chamber views. We then altered the patient's hemodynamics by positioning them in anti-Trendelenburg and repeated the recordings. We measured MAPSE manually and used autoMAPSE in all available heartbeats and in four LV walls. To assess the agreement with manual measurements, we used a modified Bland-Altman analysis. To assess the precision of each method, we calculated the least significant change (LSC). Finally, to assess trending ability, we calculated the concordance rates using a four-quadrant plot. We found that autoMAPSE measured MAPSE in almost every set of two- and four-chamber views (feasibility 95%). It took less than a second to measure and average MAPSE over three heartbeats. AutoMAPSE had a low bias (0.4 mm) and acceptable limits of agreement (- 3.7 to 4.5 mm). AutoMAPSE was more precise than manual measurements if it averaged more heartbeats. AutoMAPSE had acceptable trending ability (concordance rate 81%) during hemodynamic alterations. In conclusion, autoMAPSE is feasible as an automatic tool for rapid and quantitative assessment of LV function, indicating its potential for hemodynamic monitoring.


Subject(s)
Hemodynamic Monitoring , Ventricular Dysfunction, Left , Humans , Ventricular Function, Left , Echocardiography, Transesophageal , Ventricular Dysfunction, Left/diagnostic imaging , Retrospective Studies , Artificial Intelligence , Mitral Valve/diagnostic imaging
4.
Artif Intell Med ; 144: 102646, 2023 10.
Article in English | MEDLINE | ID: mdl-37783546

ABSTRACT

Perioperative monitoring of cardiac function is beneficial for early detection of cardiovascular complications. The standard of care for cardiac monitoring performed by trained cardiologists and anesthesiologists involves a manual and qualitative evaluation of ultrasound imaging, which is a time-demanding and resource-intensive process with intraobserver- and interobserver variability. In practice, such measures can only be performed a limited number of times during the intervention. To overcome these difficulties, this study presents a robust method for automatic and quantitative monitoring of cardiac function based on 3D transesophageal echocardiography (TEE) B-mode ultrasound recordings of the left ventricle (LV). Such an assessment obtains consistent measurements and can produce a near real-time evaluation of ultrasound imagery. Hence, the presented method is time-saving and results in increased accessibility. The mitral annular plane systolic excursion (MAPSE), characterizing global LV function, is estimated by landmark detection and cardiac view classification of two-dimensional images extracted along the long-axis of the ultrasound volume. MAPSE estimation directly from 3D TEE recordings is beneficial since it removes the need for manual acquisition of cardiac views, hence decreasing the need for interference by physicians. Two convolutional neural networks (CNNs) were trained and tested on acquired ultrasound data of 107 patients, and MAPSE estimates were compared to clinically obtained references in a blinded study including 31 patients. The proposed method for automatic MAPSE estimation had low bias and low variability in comparison to clinical reference measures. The method accomplished a mean difference for MAPSE estimates of (-0.16±1.06) mm. Thus, the results did not show significant systematic errors. The obtained bias and variance of the method were comparable to inter-observer variability of clinically obtained MAPSE measures on 2D TTE echocardiography. The novel pipeline proposed in this study has the potential to enhance cardiac monitoring in perioperative- and intensive care settings.


Subject(s)
Artificial Intelligence , Mitral Valve , Humans , Mitral Valve/diagnostic imaging , Ultrasonography , Echocardiography/methods , Ventricular Function, Left
5.
Article in English | MEDLINE | ID: mdl-37610900

ABSTRACT

Ultrasound image quality is of utmost importance for a clinician to reach a correct diagnosis. Conventionally, image quality is evaluated using metrics to determine the contrast and resolution. These metrics require localization of specific regions and targets in the image such as a region of interest (ROI), a background region, and/or a point scatterer. Such objects can all be difficult to identify in in-vivo images, especially for automatic evaluation of image quality in large amounts of data. Using a matrix array probe, we have recorded a Very Large cardiac Channel data Database (VLCD) to evaluate coherence as an in vivo image quality metric. The VLCD consists of 33280 individual image frames from 538 recordings of 106 patients. We also introduce a global image coherence (GIC), an in vivo image quality metric that does not require any identified ROI since it is defined as an average coherence value calculated from all the data pixels used to form the image, below a preselected range. The GIC is shown to be a quantitative metric for in vivo image quality when applied to the VLCD. We demonstrate, on a subset of the dataset, that the GIC correlates well with the conventional metrics contrast ratio (CR) and the generalized contrast-to-noise ratio (gCNR) with R = 0.74 ( ) and R = 0.62 ( ), respectively. There exist multiple methods to estimate the coherence of the received signal across the ultrasound array. We further show that all coherence measures investigated in this study are highly correlated ( 0.9 and ) when applied to the VLCD. Thus, even though there are differences in the implementation of coherence measures, all quantify the similarity of the signal across the array and can be averaged into a GIC to evaluate image quality automatically and quantitatively.


Subject(s)
Image Processing, Computer-Assisted , Humans , Signal-To-Noise Ratio , Ultrasonography/methods , Phantoms, Imaging , Image Processing, Computer-Assisted/methods
6.
Quant Imaging Med Surg ; 13(7): 4603-4617, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37456280

ABSTRACT

Background: An aberration correction algorithm has been implemented and demonstrated in an echocardiographic clinical trial using two-dimensional (2D) imaging. The method estimates and compensates arrival time errors between different sub-aperture processor (SAP) signals in a matrix array probe. Methods: Five standard views of channel data cineloops were recorded from 22 patients (11 male and 11 female) resulting in a total of 116 cineloops. The channel data were processed with and without the aberration correction algorithm, allowing for side-by-side comparison of images processed from the same channel data cineloops. Results: The aberration correction algorithm improved image quality, as quantified by a coherence metric, in all 7,380 processed frames. In a blinded and left-right-randomized side-by-side evaluation, four cardiologists (two experienced and two in training) preferred the aberration corrected cineloops in 97% of the cases. The clinicians reported that the corrected cineloops appeared sharper with better contrast and less noise. Many structures like valve leaflets, chordae, endocardium, and endocardial borders appeared narrower and more clearly defined in the aberration corrected images. An important finding is that aberration correction improves contrast between the endocardium and ventricle cavities for every processed image. The gain difference was confirmed by the cardiologists in their feedback and quantified with a median global gain difference estimate between the aberration-corrected and non-corrected images of 1.2 dB. Conclusions: The study shows the potential value of aberration correction in clinical echocardiography. Systematic improvement of images acquired with state-of-art equipment was observed both with quantitative metrics of image quality and clinician preference.

7.
Article in English | MEDLINE | ID: mdl-36315529

ABSTRACT

Accurate quantification of cardiac valve regurgitation jets is fundamental for guiding treatment. Cardiac ultrasound is the preferred diagnostic tool, but current methods for measuring the regurgitant volume (RVol) are limited by low accuracy and high interobserver variability. Following recent research, quantitative estimators of orifice size and RVol based on high frame rate 3-D ultrasound have been proposed, but measurement accuracy is limited by the wide point spread function (PSF) relative to the orifice size. The aim of this article was to investigate the use of deep learning to estimate both the orifice size and the RVol. A simulation model was developed to simulate the power-Doppler images of blood flow through orifices with different geometries. A convolutional neural network (CNN) was trained on 30 000 image pairs. The network was used to reconstruct orifices from power-Doppler data, which facilitated estimators for regurgitant orifice areas and flow volumes. We demonstrate that the network improves orifice shape reconstruction, as well as the accuracy of orifice area and flow volume estimation, compared with a previous approach based on thresholding of the power-Doppler signal (THD), and compared with spatially invariant deconvolution (DC). Our approach reduces the area estimation error on simulations: (THD: 13.2 ± 9.9 mm2, DC: 12.8 ± 15.8 mm2, and ours: 3.5 ± 3.2 mm2). In a phantom experiment, our approach reduces both area estimation error (THD: 10.4 ± 8.4 mm2, DC: 10.98 ± 8.17, and ours: 9.9 ± 6.0 mm2) and flow rate estimation error (THD: 20.3 ± 9.9 ml/s, DC: 18.14 ± 13.01 ml/s, and ours: 7.1 ± 10.6 ml/s). We also demonstrate in vivo feasibility for six patients with aortic insufficiency, compared with standard echocardiography and magnetic resonance references.


Subject(s)
Aortic Valve Insufficiency , Deep Learning , Ultrasonography, Doppler , Humans , Blood Flow Velocity/physiology , Echocardiography , Hemodynamics , Ultrasonography , Imaging, Three-Dimensional
8.
BMC Med Educ ; 21(1): 228, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33882913

ABSTRACT

BACKGROUND: The purpose of this study is to evaluate the mini-Clinical Evaluation Exercise (mini-CEX) as a formative assessment tool among undergraduate medical students, in terms of student perceptions, effects on direct observation and feedback, and educational impact. METHODS: Cluster randomised study of 38 fifth-year medical students during a 16-week clinical placement. Hospitals were randomised to provide a minimum of 8 mini-CEXs per student (intervention arm) or continue with ad-hoc feedback (control arm). After finishing their clinical placement, students completed an Objective Structured Clinical Examination (OSCE), a written test and a survey. RESULTS: All participants in the intervention group completed the pre-planned number of assessments, and 60% found them to be useful during their clinical placement. Overall, there were no statistically significant differences between groups in reported quantity or quality of direct observation and feedback. Observed mean scores were marginally higher on the OSCE and written test in the intervention group, but not statistically significant. CONCLUSIONS: There is considerable potential in assessing medical students during clinical placements and routine practice, but the educational impact of formative assessments remains mostly unknown. This study contributes with a robust study design, and may serve as a basis for future research.


Subject(s)
Clinical Clerkship , Students, Medical , Clinical Competence , Educational Measurement , Humans , Physical Examination
10.
Article in English | MEDLINE | ID: mdl-31180850

ABSTRACT

Aortic valve stenosis (AS) is a narrowing of the aortic valve opening, which causes increased load on the left ventricle. Untreated, this condition can eventually lead to heart failure and death. According to current recommendations, an accurate diagnosis of AS mandates the use of multiple acoustic windows to determine the highest velocity. Furthermore, the optimal positioning of both patient and transducer to reduce the beam-to-flow angle is emphasized. Being operator dependent, the beam alignment is a potential source of uncertainty. In this work, we perform noncompounded 3-D plane wave imaging for retrospective estimation of maximum velocities in aortic jets with automatic angle correction. This is achieved by combining a hybrid 3-D speckle tracking method to estimate the jet direction and 3-D tracking Doppler to generate angle-corrected sonograms, using the direction from speckle tracking as input. Results from simulations of flow through an orifice show that 3-D speckle tracking can estimate the jet orientation with acceptable accuracy for signal-to-noise ratios above 10 dB. Results from 12 subjects show that sonograms recorded from a standard apical view using the proposed method yield a maximum velocity that matches continuous wave (CW) Doppler sonograms recorded from the acoustic window with the lowest angle within a ±10% margin, provided that a high enough pulse repetition frequency could be achieved. These results motivate further validation and optimization studies.


Subject(s)
Aortic Valve Stenosis/diagnostic imaging , Echocardiography, Doppler/methods , Echocardiography, Three-Dimensional/methods , Algorithms , Blood Flow Velocity , Computer Simulation , Humans , Patient Positioning , Phantoms, Imaging , Severity of Illness Index , Transducers
11.
Ultrasound Med Biol ; 45(7): 1799-1813, 2019 07.
Article in English | MEDLINE | ID: mdl-31053427

ABSTRACT

Clutter in echocardiography hinders the visualization of the heart and reduces the diagnostic value of the images. The detailed mechanisms that generate clutter are, however, not well understood. We present five different hypotheses for generation of clutter based on reverberation artifact with a focus on apical four-chamber view echocardiograms. We demonstrate the plausibility of our hypotheses by in vitro experiments and by comparing the results with in vivo recordings from four volunteers. The results show that clutter in echocardiography can be originated both at structures that lie in the ultrasound beam path and at those that are outside the imaging plane. We show that reverberations from echogenic structures outside the imaging plane can make clutter over the image if the ultrasound beam gets deflected out of its intended path by specular reflection at the ribs. Different clutter types in the in vivo examples show that the appearance of clutter varies, depending on the tissue from which it originates. The results of this work can be applied to improve clutter reduction techniques or to design ultrasound transducers that give higher quality cardiac images. The results can also help cardiologists have a better understanding of clutter in echocardiograms and acquire better images based on the type and the source of the clutter.


Subject(s)
Artifacts , Echocardiography/methods , Animals , Humans , In Vitro Techniques , Swine
12.
IEEE Trans Med Imaging ; 38(9): 2198-2210, 2019 09.
Article in English | MEDLINE | ID: mdl-30802851

ABSTRACT

Delineation of the cardiac structures from 2D echocardiographic images is a common clinical task to establish a diagnosis. Over the past decades, the automation of this task has been the subject of intense research. In this paper, we evaluate how far the state-of-the-art encoder-decoder deep convolutional neural network methods can go at assessing 2D echocardiographic images, i.e., segmenting cardiac structures and estimating clinical indices, on a dataset, especially, designed to answer this objective. We, therefore, introduce the cardiac acquisitions for multi-structure ultrasound segmentation dataset, the largest publicly-available and fully-annotated dataset for the purpose of echocardiographic assessment. The dataset contains two and four-chamber acquisitions from 500 patients with reference measurements from one cardiologist on the full dataset and from three cardiologists on a fold of 50 patients. Results show that encoder-decoder-based architectures outperform state-of-the-art non-deep learning methods and faithfully reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.95 and an absolute mean error of 9.5 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.80 and an absolute mean error of 5.6%. Although these results are below the inter-observer scores, they remain slightly worse than the intra-observer's ones. Based on this observation, areas for improvement are defined, which open the door for accurate and fully-automatic analysis of 2D echocardiographic images.


Subject(s)
Deep Learning , Echocardiography/methods , Image Processing, Computer-Assisted/methods , Algorithms , Databases, Factual , Heart/diagnostic imaging , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...