Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 143(2): 724-735, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33423466

ABSTRACT

Preorganization and aggregation in photoredox catalysis can significantly affect reactivities or selectivities but are often neglected in synthetic and mechanistic studies, since the averaging effect of flexible ensembles can effectively hide the key activation signatures. In addition, aggregation effects are often overlooked due to highly diluted samples used in many UV studies. One prominent example is Knowles's acceleration effect of thiophenol in proton-coupled electron transfer mediated hydroamidations, for which mainly radical properties were discussed. Here, cooperative reactivity enhancements of thiophenol/disulfide mixtures reveal the importance of H-bond networks. For the first time an in-depth NMR spectroscopic aggregation and H-bond analysis of donor and acceptor combined with MD simulations was performed revealing that thiophenol acts also as an acid. The formed phosphate-H+-phosphate dimers provide an extended H-bond network with amides allowing a productive regeneration of the photocatalyst to become effective. The radical and acidic properties of PhSH were substituted by Ph2S2 and phosphoric acid. This provides a handle for optimization of radical and ionic channels and yields accelerations up to 1 order of magnitude under synthetic conditions. Reaction profiles with different light intensities unveil photogenerated amidyl radical reservoirs lasting over minutes, substantiating the positive effect of the H-bond network prior to radical cyclization. We expect the presented concepts of effective activation via H-bond networks and the reactivity improvement via the separation of ionic and radical channels to be generally applicable in photoredox catalysis. In addition, this study shows that control of aggregates and ensembles will be a key to future photocatalysis.

2.
Chemistry ; 27(15): 5028-5034, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33400327

ABSTRACT

The reaction of the organometallic diarsene complex [Cp2 Mo2 (CO)4 (η2 -As2 )] (1) with Ag[Al{OC(CF3 )3 }4 ] (Ag[TEF]) yielded the AgI monomer [Ag(η2 -1)3 ][TEF] (2). This compound exhibits dynamic behavior in solution, which allows directed selective synthesis of unprecedented organometallic-organic hybrid assemblies upon its reaction with N-donor organic molecules by a stepwise pathway, which is supported by DFT calculations. Accordingly, the reaction of 2 with 2,2'-bipyrimidine (L1) yielded the dicationic molecular compound [{(η2 -1)2 Ag}2 (µ-L1)][TEF]2 (3) or the 1D polymer [{(η2 -1)Ag}(µ-L1)]n [TEF]n (4) depending on the ratio of the reactants. However, its reactions with the pyridine-based linkers 4,4'-bipyridine (L2), 1,2-bis(4-pyridyl)ethylene (L3) and 1,2-bis(4-pyridyl)ethyne (L4) allowed the formation of the 2D polymers [{(η2 -1)Ag}2 (µ-Lx)3 ]n [TEF]2n [Lx=L2 (5), L3 (6), L4 (7), respectively]. Additionally, this concept was extended to step-by-step one-pot reactions of 1, [Ag(CH3 CN)3 ][Al{OC(CF3 )2 (CCl3 )}4 ] ([Ag(CH3 CN)3 ][TEFCl ]) and linkers L2-L4 to produce the 2D polymers [{(η2 -1)Ag}2 (µ,Lx)3 ]n [TEFCl ]2n [Lx=L2 (8), L3 (9), L4 (10), respectively].

3.
Chem Commun (Camb) ; 56(87): 13335-13338, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33094756

ABSTRACT

Structural knowledge on ubiquitous lithium salts in solution and in the crystalline state is of paramount importance for our understanding of many chemical reactions and of the electrolyte behaviour in lithium ion batteries. A bulky bidentate Si-based ligand (6) was used to create simplified model systems suitable for correlating structures of LiCl and LiPF6 complexes in the solid-state and in solution by combining various experimental, spectroscopic, and computational methods. Solution studies were performed using 1H DOSY, multinuclear variable temperature NMR spectroscopy, and quantum chemical calculations. [Ph2Si(2-CH2Py)2·LiCl]2 (3) dissociates into a monomeric species (9) in THF. For [Ph2Si(2-CH2Py)2·LiPF6]2 (11), low temperature NMR studies revealed an unprecedented chiral coordination mode (12) in non-coordinating solvents.

4.
J Am Chem Soc ; 139(51): 18444-18447, 2017 12 27.
Article in English | MEDLINE | ID: mdl-29182283

ABSTRACT

The conversion of easily available trifluoromethylarenes into aryldifluoromethyl compounds, which are valuable motifs in the pharmaceutical chemistry, is highly atom- and step-economical. However, the single C(sp3)-F bond cleavage of ArCF3 is a great challenge because of the chemical inertness of the C(sp3)-F bond and the difficult selectivity control of monodefluorination. We report here the first example of single C(sp3)-F functionalization of trifluoromethylarenes via visible-light catalysis merged with Lewis acid activation. The method allows good chemoselectivity control and shows good functional group tolerance. Mechanistic studies suggest an in situ-generated borenium cationic species as the key intermediate for C(sp3)-F bond cleavage in this reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...