Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 465: 133340, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38147748

ABSTRACT

Cystic Fibrosis (CF) is a lethal genetic disorder caused by pathogenic mutations of the CFTR gene. CF patients show a high phenotypic variability of unknown origin. In this context, the present study was therefore dedicated to investigating the effects of acute exposure to air pollution on the pulmonary morbidity of a CF-like mice model. To achieve our aim, we developed a multidisciplinary approach and designed an innovative protocol using a simulation chamber reproducing multiphasic chemical processes at the laboratory. A particular attention was paid to modulate the composition of these simulated atmospheres, in terms of concentrations of gaseous and particulate pollutants. Exposure to simulated urban atmospheres induced mucus secretion and increased inflammatory biomarkers levels, oxidative stress as well as expression of lung remodeling actors in both WT and CF-like mice. The latter were more susceptible to develop such a response. Though we could not establish direct mechanistic link between biological responses and specific components, the type of immune response induced depended on the chemical composition of the atmospheres. Overall, we demonstrated that air pollution is an important determinant of CF-like lung phenotypic variability and emphasized the added value of considering air pollution with a multi-pollutant approach.


Subject(s)
Air Pollution , Cystic Fibrosis , Humans , Mice , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Lung/pathology , Phenotype , Disease Models, Animal
2.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L447-L459, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37529852

ABSTRACT

There is growing evidence suggesting that urban pollution has adverse effects on lung health. However, how urban pollution affects alveolar mesenchymal and epithelial stem cell niches remains unknown. This study aimed to determine how complex representative urban atmospheres alter alveolar stem cell niche properties. Mice were placed in an innovative chamber realistically simulating the atmosphere of a megalopolis, or "clean air," for 7 days. Lungs were collected, and fibroblasts and epithelial cells (EpCAM+) were isolated. Proliferative capacities of fibroblasts were tested by population doubling levels (PDL), and microarray analyses were performed. Fibroblasts and EpCAM+ cells from exposed, nonexposed, or naive mice were cocultured in organoid assays to assess the stem cell properties. Collagen deposition (Sirius red), lipofibroblasts (ADRP, COL1A1), myofibroblasts (αSMA), alveolar type 2 cells (AT2, SFTPC+), and alveolar differentiation intermediate cell [ADI, keratin-8-positive (KRT8+)/claudin-4-positive (CLDN4+)] markers were quantified in the lungs. Fibroblasts obtained from mice exposed to urban atmosphere had lower PDL and survival and produced fewer and smaller organoids. Microarray analysis showed a decrease of adipogenesis and an increase of genes associated with fibrosis, suggesting a lipofibroblast to myofibroblast transition. Collagen deposition and myofibroblast number increased in the lungs of urban atmosphere-exposed mice. AT2 number was reduced and associated with an increase in ADI cells KRT8+/CLDN4+. Furthermore, EpCAM+ cells from exposed mice also produced fewer and smaller organoids. In conclusion, urban atmosphere alters alveolar mesenchymal stem cell niche properties by inducing a lipofibroblast to myofibroblast shift. It also results in alveolar epithelial dysfunction and a fibrotic-like phenotype.NEW & NOTEWORTHY Urban pollution is known to have major adverse effects on lung health. To assess the effect of pollution on alveolar regeneration, we exposed adult mice to a simulated high-pollution urban atmosphere, using an innovative CESAM simulation chamber (Multiphase Atmospheric Experimental Simulation Chamber, https://cesam.cnrs.fr/). We demonstrated that urban atmosphere alters alveolar mesenchymal stem cell niche properties by inducing a lipofibroblast to myofibroblast shift and induces alveolar epithelial dysfunction.


Subject(s)
Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/pathology , Epithelial Cell Adhesion Molecule/metabolism , Alveolar Epithelial Cells/metabolism , Lung/metabolism , Cell Differentiation , Stem Cells , Collagen/metabolism
3.
Part Fibre Toxicol ; 19(1): 41, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35706036

ABSTRACT

BACKGROUND: Emerging data indicate that prenatal exposure to air pollution may lead to higher susceptibility to several non-communicable diseases. Limited research has been conducted due to difficulties in modelling realistic air pollution exposure. In this study, pregnant mice were exposed from gestational day 10-17 to an atmosphere representative of a 2017 pollution event in Beijing, China. Intestinal homeostasis and microbiota were assessed in both male and female offspring during the suckling-to-weaning transition. RESULTS: Sex-specific differences were observed in progeny of gestationally-exposed mice. In utero exposed males exhibited decreased villus and crypt length, vacuolation abnormalities, and lower levels of tight junction protein ZO-1 in ileum. They showed an upregulation of absorptive cell markers and a downregulation of neonatal markers in colon. Cecum of in utero exposed male mice also presented a deeply unbalanced inflammatory pattern. By contrast, in utero exposed female mice displayed less severe intestinal alterations, but included dysregulated expression of Lgr5 in colon, Tjp1 in cecum, and Epcam, Car2 and Sis in ileum. Moreover, exposed female mice showed dysbiosis characterized by a decreased weighted UniFrac ß-diversity index, a higher abundance of Bacteroidales and Coriobacteriales orders, and a reduced Firmicutes/Bacteroidetes ratio. CONCLUSION: Prenatal realistic modelling of an urban air pollution event induced sex-specific precocious alterations of structural and immune intestinal development in mice.


Subject(s)
Air Pollution , Microbiota , Air Pollution/adverse effects , Animals , Female , Intestinal Mucosa/metabolism , Intestines , Male , Mice , Pregnancy , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...