Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34451031

ABSTRACT

Effective closed-loop neuromodulation relies on the acquisition of appropriate physiological control variables and the delivery of an appropriate stimulation signal. In particular, electroneurogram (ENG) data acquired from a set of electrodes applied at the surface of the nerve may be used as a potential control variable in this field. Improved electrode technologies and data processing methods are clearly needed in this context. In this work, we evaluated a new electrode technology based on multichannel organic electrodes (OE) and applied a signal processing chain in order to detect respiratory-related bursts from the phrenic nerve. Phrenic ENG (pENG) were acquired from nine Long Evans rats in situ preparations. For each preparation, a 16-channel OE was applied around the phrenic nerve's surface and a suction electrode was applied to the cut end of the same nerve. The former electrode provided input multivariate pENG signals while the latter electrode provided the gold standard for data analysis. Correlations between OE signals and that from the gold standard were estimated. Signal to noise ratio (SNR) and ROC curves were built to quantify phrenic bursts detection performance. Correlation score showed the ability of the OE to record high-quality pENG. Our methods allowed good phrenic bursts detection. However, we failed to demonstrate a spatial selectivity from the multiple pENG recorded with our OE matrix. Altogether, our results suggest that highly flexible and biocompatible multi-channel electrode may represent an interesting alternative to metallic cuff electrodes to perform nerve bursts detection and/or closed-loop neuromodulation.


Subject(s)
Phrenic Nerve , Signal Processing, Computer-Assisted , Animals , Electrodes , Electrodes, Implanted , Rats , Rats, Long-Evans , Signal-To-Noise Ratio
2.
Int J Mol Sci ; 21(14)2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32698469

ABSTRACT

Pharmacological neuromodulation of swallowing may represent a promising therapeutic option to treat dysphagia. Previous studies suggested a serotonergic control of swallowing, but mechanisms remain poorly understood. Here, we investigated the effects of the serotonergic agonist quipazine on swallowing, using the arterially perfused working heart-brainstem (in situ) preparation in rats. Systemic injection of quipazine produced single swallows with motor patterns and swallow-breathing coordination similar to spontaneous swallows, and increased swallow rate with moderate changes in cardiorespiratory functions. Methysergide, a 5-HT2 receptor antagonist, blocked the excitatory effect of quipazine on swallowing, but had no effect on spontaneous swallow rate. Microinjections of quipazine in the nucleus of the solitary tract were without effect. In contrast, similar injections in caudal medullary raphe nuclei increased swallow rate without changes in cardiorespiratory parameters. Thus, quipazine may exert an excitatory effect on raphe neurons via stimulation of 5-HT2A receptors, leading to increased excitability of the swallowing network. In conclusion, we suggest that pharmacological stimulation of swallowing by quipazine in situ represents a valuable model for experimental studies. This work paves the way for future investigations on brainstem serotonergic modulation, and further identification of neural populations and mechanisms involved in swallowing and/or swallow-breathing interaction.


Subject(s)
Deglutition/drug effects , Quipazine/pharmacology , Raphe Nuclei/drug effects , Serotonin Receptor Agonists/pharmacology , Animals , Injections, Intra-Arterial , Quipazine/administration & dosage , Raphe Nuclei/physiology , Rats , Rats, Wistar , Respiration/drug effects , Serotonin Receptor Agonists/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...