Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Parasitol ; 114: 27-73, 2021.
Article in English | MEDLINE | ID: mdl-34696844

ABSTRACT

Lymphatic filariasis (LF) is a major public health problem globally and in the Pacific Region. The Global Programme to Eliminate LF has made great progress but LF is persistent and resurgent in some Pacific countries and territories. Samoa remains endemic for LF despite elimination efforts through multiple two-drug mass drug administrations (MDA) since 1965, including renewed elimination efforts started in 1999 under the Pacific Programme for Elimination of LF (PacELF). Despite eight rounds of national and two rounds of subnational MDA under PacELF, Samoa failed transmission assessment surveys (TAS) in all three evaluation units in 2017. In 2018, Samoa was the first to distribute countrywide triple-drug MDA using ivermectin, diethylcarbamazine (DEC), and albendazole. This paper provides a review of MDAs and historical survey results from 1998 to 2017 in Samoa and highlights lessons learnt from LF elimination efforts, including challenges and potential ways to overcome them to successfully achieve elimination.


Subject(s)
Elephantiasis, Filarial , Filaricides , Animals , Elephantiasis, Filarial/drug therapy , Elephantiasis, Filarial/epidemiology , Elephantiasis, Filarial/prevention & control , Filaricides/therapeutic use , Mass Drug Administration , Oceania/epidemiology , Prevalence , Samoa , Wuchereria bancrofti
2.
Trop Med Health ; 46: 41, 2018.
Article in English | MEDLINE | ID: mdl-30533996

ABSTRACT

BACKGROUND: The Global Programme to Eliminate Lymphatic Filariasis has encouraged countries to follow a set of guidelines to help them assess the need for mass drug administration and evaluate its progress. Papua New Guinea (PNG) is one of the highest priority countries in the Western Pacific for lymphatic filariasis and the site of extensive research on lymphatic filariasis and surveys of its prevalence. However, different diagnostic tests have been used and thresholds for each test are unclear. METHODS: We reviewed the prevalence of lymphatic filariasis reported in 295 surveys conducted in PNG between 1990 and 2014, of which 65 used more than one test. Results from different diagnostics were standardised using a set of criteria that included a model to predict antigen prevalence from microfilariae prevalence. We mapped the point location of each of these surveys and categorised their standardised prevalence estimates. RESULTS: Several predictive models were produced and investigated, including the effect of any mass drug administration and number of rounds prior to the surveys. One model was chosen based on goodness of fit parameters and used to predict antigen prevalence for surveys that tested only for microfilariae. Standardised prevalence values show that 72% of all surveys reported a prevalence above 0.05. High prevalence was situated on the coastal north, south and island regions, while the central highland area of Papua New Guinea shows low levels of prevalence. CONCLUSIONS: Our study is the first to provide an explicit predictive relationship between the prevalence values based on empirical results from antigen and microfilaria tests, taking into account the occurrence of mass drug administration. This is a crucial step to combine studies to develop risk maps of lymphatic filariasis for programme planning and evaluation, as shown in the case of Papua New Guinea.

3.
J Acoust Soc Am ; 136(2): 930-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25096127

ABSTRACT

Australian snubfin and Indo-Pacific humpback dolphins co-occur throughout most of their range in coastal waters of tropical Australia. Little is known of their ecology or acoustic repertoires. Vocalizations from humpback and snubfin dolphins were recorded in two locations along the Queensland coast during 2008 and 2010 to describe their vocalizations and evaluate the acoustic differences between these two species. Broad vocalization types were categorized qualitatively. Both species produced click trains burst pulses and whistles. Principal component analysis of the nine acoustic variables extracted from the whistles produced nine principal components that were input into discriminant function analyses to classify 96% of humpback dolphin whistles and about 78% of snubfin dolphin calls correctly. Results indicate clear acoustic differences between the vocal whistle repertoires of these two species. A stepwise routine identified two principal components as significantly distinguishable between whistles of each species: frequency parameters and frequency trend ratio. The capacity to identify these species using acoustic monitoring techniques has the potential to provide information on presence/absence, habitat use and relative abundance for each species.


Subject(s)
Acoustics , Dolphins/physiology , Vocalization, Animal , Animals , Discriminant Analysis , Dolphins/classification , Environmental Monitoring/methods , Oceans and Seas , Principal Component Analysis , Queensland , Signal Processing, Computer-Assisted , Sound Spectrography , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...