Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Nanosci Au ; 3(3): 241-255, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37360843

ABSTRACT

Understanding the dose-dependent effect of over-the-counter drugs on red blood cells (RBCs) is crucial for hematology and digital pathology. Yet, it is challenging to continuously record the real-time, drug-induced shape changes of RBCs in a label-free manner. Here, we demonstrate digital holotomography (DHTM)-enabled real-time, label-free concentration-dependent and time-dependent monitoring of ibuprofen on RBCs from a healthy donor. The RBCs are segmented based on three-dimensional (3D) and four-dimensional (4D) refractive index tomograms, and their morphological and chemical parameters are retrieved with their shapes classified using machine learning. We directly observed the formation and motion of spicules on the RBC membrane when aqueous solutions of ibuprofen were drop-cast on wet blood, creating rough-membraned echinocyte forms. At low concentrations of 0.25-0.50 mM, the ibuprofen-induced morphological change was transient, but at high concentrations (1-3 mM) the spiculated RBC remained over a period of up to 1.5 h. Molecular simulations confirmed that aggregates of ibuprofen molecules at high concentrations significantly disrupted the RBC membrane structural integrity and lipid order but produced negligible effect at low ibuprofen concentrations. Control experiments on the effect of urea, hydrogen peroxide, and aqueous solutions on RBCs showed zero spicule formation. Our work clarifies the dose-dependent chemical effects on RBCs using label-free microscopes that can be deployed for the rapid detection of overdosage of over-the-counter and prescribed drugs.

2.
CNS Neurosci Ther ; 28(9): 1315-1325, 2022 09.
Article in English | MEDLINE | ID: mdl-35778846

ABSTRACT

INTRODUCTION: Vanishing white matter (VWM) is a leukodystrophy that leads to neurological dysfunction and early death. Astrocytes are indicated as therapeutic target, because of their central role in VWM pathology. Previous cell replacement therapy using primary mouse glial precursors phenotypically improved VWM mice. AIMS: The aim of this study was to determine the translational potential of human stem cell-derived glial cell replacement therapy for VWM. We generated various glial cell types from human pluripotent stem cells in order to identify a human cell population that successfully ameliorates disease hallmarks of a VWM mouse model. The effects of cell grafts on motor skills and VWM brain pathology were assessed. RESULTS: Transplantation of human glial precursor populations improved the VWM phenotype. The intrinsic properties of these cells were partially reflected by cell fate post-transplantation, but were also affected by the host microenvironment. Strikingly, the spread of transplanted cells into the white matter versus the gray matter was different when grafted into the VWM brain as compared to a healthy brain. CONCLUSIONS: Transplantation of human glial cell populations can have therapeutic effects for VWM. For further translation to the clinic, the microenvironment in the VWM patient brain should be considered as an important moderator of cell replacement therapy.


Subject(s)
Leukoencephalopathies , White Matter , Animals , Astrocytes/pathology , Humans , Leukoencephalopathies/genetics , Mice , Neuroglia/pathology , Stem Cell Transplantation , White Matter/pathology
3.
Front Cell Neurosci ; 15: 610295, 2021.
Article in English | MEDLINE | ID: mdl-33642995

ABSTRACT

Multiple Sclerosis (MS) is a complex and chronic disease of the central nervous system (CNS), characterized by both degenerative and inflammatory processes leading to axonal damage, demyelination, and neuronal loss. In the last decade, the traditional outside-in standpoint on MS pathogenesis, which identifies a primary autoimmune inflammatory etiology, has been challenged by a complementary inside-out theory. By focusing on the degenerative processes of MS, the axo-myelinic system may reveal new insights into the disease triggering mechanisms. Oxidative stress (OS) has been widely described as one of the means driving tissue injury in neurodegenerative disorders, including MS. Axonal mitochondria constitute the main energy source for electrically active axons and neurons and are largely vulnerable to oxidative injury. Consequently, axonal mitochondrial dysfunction might impair efficient axo-glial communication, which could, in turn, affect axonal integrity and the maintenance of axonal, neuronal, and synaptic signaling. In this review article, we argue that OS-derived mitochondrial impairment may underline the dysfunctional relationship between axons and their supportive glia cells, specifically oligodendrocytes and that this mechanism is implicated in the development of a primary cytodegeneration and a secondary pro-inflammatory response (inside-out), which in turn, together with a variably primed host's immune system, may lead to the onset of MS and its different subtypes.

SELECTION OF CITATIONS
SEARCH DETAIL
...