Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Steroid Biochem Mol Biol ; 224: 106176, 2022 11.
Article in English | MEDLINE | ID: mdl-36087695

ABSTRACT

Previous studies have shown that 17ß-estradiol plays a cardioprotective role in the central nervous system (CNS) of male rats. The aim of the present study was to determine the influence of 17ß-estradiol on sympathetic vasomotor activity and blood pressure in a renovascular hypertensive Goldblatt two-kidney one-clip (2K-1C) male rat model. We also determined the influence of angiotensin II AT1 receptor on the expression of estrogen receptors (ERα, ERß, and G protein-coupled ER (GPER)) in the rostral ventrolateral medulla (RVLM) of Goldblatt rats. Experiments were performed in Goldblatt and age-matched control rats six weeks after clipping of renal artery to induce hypertension. Microinjection of 17ß-estradiol into the RVLM led to a greater reduction in mean arterial pressure and renal sympathetic nerve activity in controls than in 2K-1C rats. Microinjection of the GPER agonist G-1 into the RVLM led to a significantly greater increase in mean arterial pressure and renal sympathetic nerve activity in 2K-1C rats. Expression levels of estrogen receptors GPER and ERα, but not ERß, were significantly higher in the RVLM of 2K-1C rats than in that of the control rats. Chronic treatment with losartan significantly reduced the expression levels of estrogen receptors in the RVLM of 2K-1C rats. Taken altogether, the data suggest that the imbalance of actions between ERα and GPER, particularly with the predominance of GPER in the RVLM, contributes to sympathetic overactivation in male rats with Goldblatt hypertension. AT1-Angiotensin II receptor in the RVLM upregulated estrogen receptor expression in male Goldblatt rats.


Subject(s)
Hypertension, Renovascular , Hypertension , Rats , Male , Animals , Hypertension, Renovascular/metabolism , Receptors, Estrogen , Estrogen Receptor alpha , Blood Pressure , Estradiol/pharmacology
2.
Braz J Med Biol Res ; 55: e11873, 2022.
Article in English | MEDLINE | ID: mdl-35043862

ABSTRACT

Sepsis causes long-term disability, such as immune dysfunction, neuropsychological disorders, persistent inflammation, catabolism, and immunosuppression, leading to a high risk of death in survivors, although the contributing factors of mortality are unknown. The purpose of this experimental study in rats was to examine renal (rSNA) and splanchnic (sSNA) sympathetic nerve activity, as well as baroreflex sensitivity, in acute and chronic post-sepsis periods. The rats were divided into two groups: control group with naïve Wistar rats and sepsis group with 2-mL intravenous inoculation of Escherichia coli at 108 CFU/mL. Basal mean arterial pressure, heart rate, rSNA, sSNA, and baroreflex sensitivity were evaluated in all groups at the acute (6 h) and chronic periods (1 and 3 months). Basal rSNA and sSNA were significantly reduced in the surviving rats, as was their baroreflex sensitivity, for both pressor and hypotensive responses, and this effect lasted for up to 3 months. A single episode of sepsis in rats was enough to induce long-term alterations in renal and splanchnic sympathetic vasomotor nerve activity, representing a possible systemic event that needs to be elucidated. These findings showed that post-sepsis impairment of sympathetic vasomotor response may be one of the critical components in the inability of sepsis survivors to respond effectively to new etiological illness factors, thereby increasing their risk of post-sepsis morbidity.


Subject(s)
Baroreflex , Sepsis , Animals , Blood Pressure , Disease Models, Animal , Heart Rate , Kidney , Rats , Rats, Wistar , Sympathetic Nervous System
3.
Braz. j. med. biol. res ; 55: e11873, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1355918

ABSTRACT

Sepsis causes long-term disability, such as immune dysfunction, neuropsychological disorders, persistent inflammation, catabolism, and immunosuppression, leading to a high risk of death in survivors, although the contributing factors of mortality are unknown. The purpose of this experimental study in rats was to examine renal (rSNA) and splanchnic (sSNA) sympathetic nerve activity, as well as baroreflex sensitivity, in acute and chronic post-sepsis periods. The rats were divided into two groups: control group with naïve Wistar rats and sepsis group with 2-mL intravenous inoculation of Escherichia coli at 108 CFU/mL. Basal mean arterial pressure, heart rate, rSNA, sSNA, and baroreflex sensitivity were evaluated in all groups at the acute (6 h) and chronic periods (1 and 3 months). Basal rSNA and sSNA were significantly reduced in the surviving rats, as was their baroreflex sensitivity, for both pressor and hypotensive responses, and this effect lasted for up to 3 months. A single episode of sepsis in rats was enough to induce long-term alterations in renal and splanchnic sympathetic vasomotor nerve activity, representing a possible systemic event that needs to be elucidated. These findings showed that post-sepsis impairment of sympathetic vasomotor response may be one of the critical components in the inability of sepsis survivors to respond effectively to new etiological illness factors, thereby increasing their risk of post-sepsis morbidity.

4.
Clin Exp Hypertens ; 36(8): 567-71, 2014.
Article in English | MEDLINE | ID: mdl-24678694

ABSTRACT

Sleep loss has been implicated in triggering the hypertension. The goal of the present study was investigated the possible mechanisms underlying cardiovascular alterations after acute paradoxical sleep deprivation (PSD). Male Wistar rats were assigned in two experimental groups: (1) control and (2) PSD for 24 h using the modified single platform method. Paradoxical sleep deprived rats exhibited higher blood pressure, heart rate (HR) and impaired baroreceptor sensitivity. After pharmacological autonomic double blockade (propranolol and methylatropine administration), intrinsic heart rate was decreased after PSD. The PSD rats showed a reduction in the vagal tone without affecting sympathetic tone. Isoproterenol administration (0.001, 0.01 and 1 µg/kg) induced an increase in ΔHR responses in PSD group. Electrocardiographic analysis in response to ß-adrenergic stimulation indicated that PSD contributed to ventricular cardiac arrhythmias. Our findings suggest that acute paradoxical sleep loss induce cardiovascular alterations, autonomic imbalance accompanied by impaired baroreflex sensitivity and increased arrhythmia susceptibility.


Subject(s)
Sleep Deprivation/physiopathology , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/physiopathology , Autonomic Nervous System Diseases/etiology , Autonomic Nervous System Diseases/physiopathology , Baroreflex , Blood Pressure , Heart Rate/drug effects , Hypertension/etiology , Hypertension/physiopathology , Isoproterenol/administration & dosage , Male , Pressoreceptors/physiopathology , Rats , Rats, Wistar , Sleep Deprivation/complications , Sleep, REM/physiology
5.
Auton Neurosci ; 171(1-2): 41-8, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23146621

ABSTRACT

The paraventricular nucleus (PVN) of the hypothalamus is an important region of the brain involved in the regulation of sympathetic vasomotor tone. Accumulating evidence supports the idea that a change in hypothalamic γ-aminobutyric acid (GABA)-ergic inhibitory and glutamatergic excitatory inputs contribute to the exacerbated sympathetic drive in chronic heart failure (HF). The purpose of this study was to determine whether a possible imbalance between glutamatergic and GABAergic inputs to the PVN contributes to increased sympathetic outflow in HF in two different sympathetic territories. Renal (RSNA) and splanchnic sympathetic nerve activity (SSNA), mean arterial blood pressure (MAP) and heart rate were recorded from urethane-anesthetized HF or sham rats. The NMDA-glutamate and GABA-A receptor densities within the PVN were quantified in HF and sham rats by autoradiography. Bilateral microinjection of kynurenic acid (4nmol) into the PVN decreased MAP and RSNA and SSNA in HF but not in sham rats. Furthermore, in response to GABA-A blockade in the PVN by bicuculline (400 pmol), hypertension and SSNA were reduced in HF compared to sham. The quantification of ionotropic NMDA receptors and GABA-A receptors in the PVN showed a significant reduction of GABA-A in HF rats; however, the NMDA density in the PVN did not differ between groups. Thus, this study provides evidence that the sympathoexcitation is maintained by an imbalance between GABAergic and glutamatergic inputs in the PVN in HF. The reduced GABAergic input results in relatively augmented glutamatergic actions in the PVN of HF rats.


Subject(s)
Blood Pressure/physiology , GABAergic Neurons/physiology , Heart Failure/physiopathology , Heart Rate/physiology , Paraventricular Hypothalamic Nucleus/physiopathology , Splanchnic Nerves/physiopathology , Animals , Autoradiography , Blood Pressure/drug effects , Disease Models, Animal , Dizocilpine Maleate/pharmacokinetics , Echocardiography , Excitatory Amino Acid Antagonists/pharmacology , GABA-A Receptor Agonists/pharmacokinetics , GABAergic Neurons/drug effects , Heart Failure/pathology , Heart Rate/drug effects , Heart Ventricles/drug effects , Heart Ventricles/physiopathology , Kidney/innervation , Kynurenic Acid/pharmacology , Ligation/adverse effects , Male , Microinjections , Muscimol/pharmacokinetics , Paraventricular Hypothalamic Nucleus/drug effects , Phloroglucinol/analogs & derivatives , Phloroglucinol/pharmacokinetics , Rats , Rats, Wistar , Splanchnic Nerves/drug effects , Terpenes/pharmacokinetics , Tritium/pharmacokinetics
6.
Calcif Tissue Int ; 87(1): 52-9, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20383765

ABSTRACT

Low-intensity electrical stimulation (LIES) may counteract the effects of ovariectomy (OVX) on nitric oxide synthase (NOS) expression, osteocyte viability, bone structure, and microarchitecture in rats (Lirani-Galvão et al., Calcif Tissue Int 84:502-509, 2009). The aim of the present study was to investigate if these effects of LIES could be mediated by NO. We analyzed the effects of NO blockage (by L-NAME) in the response to LIES on osteocyte viability, bone structure, and microarchitecture in OVX rats. Sixty rats (200-220 g) were divided into six groups: sham, sham-L-NAME (6 mg/kg/day), OVX, OVX-L-NAME, OVX-LIES, and OVX-LIES-L-NAME. After 12 weeks, rats were killed and tibiae collected for histomorphometric analysis and immunohistochemical detection of endothelial NOS (eNOS), inducible NOS (iNOS), and osteocyte apoptosis (caspase-3 and TUNEL). In the presence of L-NAME, LIES did not counteract the OVX-induced effects on bone volume and trabecular number (as on OVX-LIES). L-NAME blocked the stimulatory effects of LIES on iNOS and eNOS expression of OVX rats. Both L-NAME and LIES decreased osteocyte apoptosis. Our results showed that in OVX rats L-NAME partially blocks the effects of LIES on bone structure, turnover, and expression of iNOS and eNOS, suggesting that NO may be a mediator of some positive effects of LIES on bone.


Subject(s)
Nitric Oxide/metabolism , Animals , Apoptosis/drug effects , Apoptosis/physiology , Bone and Bones/metabolism , Caspase 3 , Female , In Situ Nick-End Labeling , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type II , Nitric Oxide Synthase Type III/metabolism , Osteocytes/metabolism , Osteocytes/physiology , Ovariectomy , Rats , Rats, Wistar
7.
Calcif Tissue Int ; 84(6): 502-9, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19458889

ABSTRACT

Low Intensity Electrical Stimulation (LIES) has been used for bone repair, but little is known about its effects on bone after menopause. Osteocytes probably play a role in mediating this physical stimulus and they could act as transducers through the release of biochemical signals, such as nitric oxide (NO). The aim of the present study was to investigate the effects of LIES on bone structure and remodeling, NOS expression and osteocyte viability in ovariectomized (OVX) rats. Thirty rats (200-220 g) were divided into 3 groups: SHAM, OVX, and OVX subjected to LIES (OVX + LIES) for 12 weeks. Following the protocol, rats were sacrificed and tibias were collected for histomorphometric analysis and immunohistochemical detection of endothelial NO synthase (eNOS), inducible NOS (iNOS), and osteocyte apoptosis (caspase-3 and TUNEL). OVX rats showed significant (p < 0.05 vs. SHAM) decreased bone volume (10% vs. 25%) and trabecular number (1.7 vs. 3.9), and increased eroded surfaces (4.7% vs. 3.2%) and mineralization surfaces (15.9% vs. 7.7%). In contrast, after LIES, all these parameters were significantly different from OVX but not different from SHAM. eNOS and iNOS were similarly expressed in subperiosteal regions of tibiae cortices of SHAM, not expressed in OVX, and similarly expressed in OVX + LIES when compared to SHAM. In OVX, the percentage of apoptotic osteocytes (24%) was significantly increased when compared to SHAM (11%) and OVX + LIES (8%). Our results suggest that LIES counteracts some effects of OVX on bone tissue preserving bone structure and microarchitecture, iNOS and eNOS expression, and osteocyte viability.


Subject(s)
Bone and Bones/physiology , Electric Stimulation Therapy , Menopause , Nitric Oxide/metabolism , Osteocytes/physiology , Animals , Apoptosis/physiology , Bone and Bones/metabolism , Bone and Bones/ultrastructure , Caspase 3/metabolism , Cell Survival/physiology , Female , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Osteocytes/metabolism , Osteocytes/ultrastructure , Ovariectomy , Rats , Rats, Wistar , Tibia/cytology , Tibia/physiology
8.
Prog Neuropsychopharmacol Biol Psychiatry ; 33(3): 562-7, 2009 Apr 30.
Article in English | MEDLINE | ID: mdl-19258023

ABSTRACT

The aim of this investigation was to evaluate genetic damage induced in male rats by experimental sleep loss for short-term (24 and 96 h) and long-term (21 days) intervals, as well as their respective recovery periods in peripheral blood, brain, liver and heart tissue by the single cell gel (comet) assay. Rats were paradoxically deprived of sleep (PSD) by the platform technique for 24 or 96 h, or chronically sleep-restricted (SR) for 21 days. We also sought to verify the time course of their recovery after 24 h of rebound sleep. The results showed DNA damage in blood cells of rats submitted to PSD for 96 h. Brain tissue showed extensive genotoxic damage in PSD rats (both 24 and 96 h), though the effect was more pronounced in the 96 h group. Rats allowed to recover from the PSD-96 h and SR-21 days treatments showed DNA damage as compared to negative controls. Liver and heart did not display any genotoxicity activity. Corticosterone concentrations were increased after PSD (24 and 96 h) relative to control rats, whereas these levels were unaffected in the SR group. Collectively, these findings reveal that sleep loss was able to induce genetic damage in blood and brain cells, especially following acute exposure. Since DNA damage is an important step in events leading to genomic instability, this study represents a relevant contribution to the understanding of the potential health risks associated with sleep deprivation.


Subject(s)
DNA Damage/physiology , Sleep Deprivation/physiopathology , Analysis of Variance , Animals , Brain/physiopathology , Comet Assay/methods , Corticosterone/blood , Disease Models, Animal , Male , Rats , Rats, Wistar , Sleep Deprivation/blood , Time Factors
9.
Eur J Clin Invest ; 39(4): 289-95, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19292884

ABSTRACT

BACKGROUND: Taking into consideration the strong evidence for a relationship between DNA damage and carcinogenesis, the aim of this study was to investigate whether blood, liver, heart, kidney and brain are particularly sensitive organs for DNA damaging during chronic renal disease by the single-cell gel (comet) assay to predict genetic instability induced by this pathological condition. METHODS: A total of 18 male Wistar rats were divided into two groups: negative control (n = 8) and experimental (n = 10), in which was submitted to the 5/6 renal mass ablation by ligation of two or three branches of the left renal artery and total right nephrectomy during 8 weeks. RESULTS: The results showed that chronic renal disease was able to induce genetic damage in blood, heart, liver and kidney cells as depicted by the mean tail moment. No genetic damage was induced in brain cells, i.e. no significant statistically differences (P > 0.05) were noticed when compared to negative control. CONCLUSION: In conclusion, our results suggest that chronic renal failure could contribute to the damage of DNA at all organs evaluated, except to the brain cells. As DNA damage is an important step in events leading to carcinogenesis, this study represents a relevant contribution to the correct evaluation of the potential health risks associated with kidney disease.


Subject(s)
DNA Damage , Kidney Failure, Chronic/complications , Animals , Biomarkers/metabolism , Case-Control Studies , Comet Assay/methods , Kidney/pathology , Kidney Failure, Chronic/genetics , Kidney Failure, Chronic/pathology , Liver/pathology , Male , Rats , Rats, Wistar , Statistics as Topic
10.
Braz J Med Biol Res ; 41(7): 557-62, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18719736

ABSTRACT

It is well known that the ventrolateral medulla contains neurons involved in the tonic and reflex control of the cardiovascular system. Two regions within the ventrolateral medulla were initially identified: the rostral ventrolateral medulla (RVLM) and the caudal ventrolateral medulla (CVLM). Activation of the RVLM raises arterial blood pressure and sympathetic nerve activity, and activation of the CVLM causes opposite effects. The RVLM premotor neurons project directly to sympathetic preganglionic neurons and are involved in the maintenance of resting sympathetic vasomotor tone. A significant proportion of tonic activity in the RVLM sympathetic premotor neurons is driven by neurons located in a third region of the ventrolateral medulla denominated caudal pressor area (CPA). The CPA is a pressor region located at the extreme caudal part of the ventrolateral medulla that appears to have an important role controlling the activity of RVLM neurons. In this brief review, we will address the importance of the ventrolateral medulla neurons for the generation of resting sympathetic tone related to arterial blood pressure control focusing on two regions, the RVLM and the CPA.


Subject(s)
Blood Pressure/physiology , Medulla Oblongata/physiology , Neurons/physiology , Vasomotor System/physiology , Animals , GABA Agents/pharmacology , Medulla Oblongata/drug effects , Microinjections , Neural Inhibition/physiology , Sympathetic Nervous System/physiology , gamma-Aminobutyric Acid/pharmacology
11.
Braz. j. med. biol. res ; 41(7): 557-562, July 2008. ilus, graf
Article in English | LILACS | ID: lil-489517

ABSTRACT

It is well known that the ventrolateral medulla contains neurons involved in the tonic and reflex control of the cardiovascular system. Two regions within the ventrolateral medulla were initially identified: the rostral ventrolateral medulla (RVLM) and the caudal ventrolateral medulla (CVLM). Activation of the RVLM raises arterial blood pressure and sympathetic nerve activity, and activation of the CVLM causes opposite effects. The RVLM premotor neurons project directly to sympathetic preganglionic neurons and are involved in the maintenance of resting sympathetic vasomotor tone. A significant proportion of tonic activity in the RVLM sympathetic premotor neurons is driven by neurons located in a third region of the ventrolateral medulla denominated caudal pressor area (CPA). The CPA is a pressor region located at the extreme caudal part of the ventrolateral medulla that appears to have an important role controlling the activity of RVLM neurons. In this brief review, we will address the importance of the ventrolateral medulla neurons for the generation of resting sympathetic tone related to arterial blood pressure control focusing on two regions, the RVLM and the CPA.


Subject(s)
Animals , Blood Pressure/physiology , Medulla Oblongata/physiology , Neurons/physiology , Vasomotor System/physiology , GABA Agents/pharmacology , Microinjections , Medulla Oblongata/drug effects , Neural Inhibition/physiology , Sympathetic Nervous System/physiology , gamma-Aminobutyric Acid/pharmacology
12.
Braz J Med Biol Res ; 40(3): 401-8, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17334538

ABSTRACT

We evaluated the hemodynamic pattern and the contribution of the sympathetic nervous system in conscious and anesthetized (1.4 g/kg urethane, iv) Wistar rats with L-NAME-induced hypertension (20 mg/kg daily). The basal hemodynamic profile was similar for hypertensive animals, conscious (N = 12) or anesthetized (N = 12) treated with L-NAME for 2 or 7 days: increase of total peripheral resistance associated with a decrease of cardiac output (CO) compared to normotensive animals, conscious (N = 14) or anesthetized (N = 14). Sympathetic blockade with hexamethonium essentially caused a decrease in total peripheral resistance in hypertensive animals (conscious, 2 days: from (means +/- SEM) 2.47 +/- 0.08 to 2.14 +/- 0.07; conscious, 7 days: from 2.85 +/- 0.13 to 2.07 +/- 0.33; anesthetized, 2 days: from 3.00 +/- 0.09 to 1.83 +/- 0.25 and anesthetized, 7 days: from 3.56 +/- 0.11 to 1.53 +/- 0.10 mmHg mL-1 min-1) with no change in CO in either group. However, in the normotensive group a fall in CO (conscious: from 125 +/- 4.5 to 96 +/- 4; anesthetized: from 118 +/- 1.5 to 104 +/- 5.5 mL/min) was observed. The responses after hexamethonium were more prominent in the hypertensive anesthetized group. However, no difference was observed between conscious and anesthetized normotensive rats in response to sympathetic blockade. The present study shows that the vasoconstriction in response to L-NAME was mediated by the sympathetic drive. The sympathetic tone plays an important role in the initiation and maintenance of hypertension.


Subject(s)
Cardiac Output/physiology , Hypertension/physiopathology , Nitric Oxide Synthase/antagonists & inhibitors , Sympathetic Nervous System/physiopathology , Vascular Resistance/physiology , Animals , Cardiac Output/drug effects , Disease Models, Animal , Enzyme Inhibitors , Hypertension/chemically induced , Male , NG-Nitroarginine Methyl Ester , Rats , Rats, Wistar , Vascular Resistance/drug effects
13.
Braz. j. med. biol. res ; 40(3): 401-408, Mar. 2007.
Article in English | LILACS | ID: lil-441762

ABSTRACT

We evaluated the hemodynamic pattern and the contribution of the sympathetic nervous system in conscious and anesthetized (1.4 g/kg urethane, iv) Wistar rats with L-NAME-induced hypertension (20 mg/kg daily). The basal hemodynamic profile was similar for hypertensive animals, conscious (N = 12) or anesthetized (N = 12) treated with L-NAME for 2 or 7 days: increase of total peripheral resistance associated with a decrease of cardiac output (CO) compared to normotensive animals, conscious (N = 14) or anesthetized (N = 14). Sympathetic blockade with hexamethonium essentially caused a decrease in total peripheral resistance in hypertensive animals (conscious, 2 days: from (means ± SEM) 2.47 ± 0.08 to 2.14 ± 0.07; conscious, 7 days: from 2.85 ± 0.13 to 2.07 ± 0.33; anesthetized, 2 days: from 3.00 ± 0.09 to 1.83 ± 0.25 and anesthetized, 7 days: from 3.56 ± 0.11 to 1.53 ± 0.10 mmHg mL-1 min-1) with no change in CO in either group. However, in the normotensive group a fall in CO (conscious: from 125 ± 4.5 to 96 ± 4; anesthetized: from 118 ± 1.5 to 104 ± 5.5 mL/min) was observed. The responses after hexamethonium were more prominent in the hypertensive anesthetized group. However, no difference was observed between conscious and anesthetized normotensive rats in response to sympathetic blockade. The present study shows that the vasoconstriction in response to L-NAME was mediated by the sympathetic drive. The sympathetic tone plays an important role in the initiation and maintenance of hypertension.


Subject(s)
Animals , Male , Rats , Cardiac Output/physiology , Hypertension/physiopathology , Nitric Oxide Synthase/antagonists & inhibitors , Sympathetic Nervous System/physiology , Vascular Resistance/physiology , Cardiac Output/drug effects , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Hypertension/chemically induced , NG-Nitroarginine Methyl Ester/pharmacology , Rats, Wistar , Vascular Resistance/drug effects
14.
Regul Pept ; 140(1-2): 5-11, 2007 Apr 05.
Article in English | MEDLINE | ID: mdl-17196676

ABSTRACT

The present study was designed to evaluate, in Wistar rats, the effect of high- or low-salt diet on the hemodynamic parameters and on the renal and lumbar sympathetic nerve activity. The renal gene expression of the renin angiotensin system components was also evaluated, aiming to find some correlation between salt intake, sodium homeostasis and blood pressure increase. Male Wistar rats received low (0.06% Na, TD 92141-Harlan Teklad), a normal (0.5% Na, TD 92140), or a high-salt diet (3.12% Na, TD 92142) from weaning to adulthood. Hemodynamic parameters such as cardiac output and total peripheral resistance, and the renal and lumbar sympathetic nerve activity were determined (n=45). Plasma renin activity, plasma and renal content of angiotensin (ANG) I and II, and the renal mRNA expression of angiotensinogen, renin, AT1 and AT2 receptors were also measured (n=24). Compared to normal- and low-salt diet-, high-salt-treated rats were hypertensive and developed an increase (P<0.05) in total peripheral resistance and lumbar sympathetic nerve activity. A decrease in renal renin and angiotensinogen-mRNAs and in plasma ANG II and plasma renin activity was also found in salt overloaded animals. The renal sympathetic nerve activity was higher (P<0.05) in low- compared to high-salt-treated rats, and was associated with an increase (P<0.05) in renal ANG I and II and with a decrease (P<0.05) in AT2 renal mRNA. Plasma ANG I and II and plasma renin activity were higher in low- than in normal-salt rats. Our results show that increased blood pressure is associated with increases in lumbar sympathetic nerve activity and total peripheral resistance in high-salt-treated rats. However, in low-salt-treated rats an increase in the renal sympathetic nerve was correlated with an increase in the renal content of ANG I and II and with a decrease in AT2 renal mRNA. These changes are probably in favor of the antinatriuretic response and the sodium homeostasis in the low-salt group.


Subject(s)
Angiotensinogen/genetics , Angiotensins/genetics , Sodium Chloride, Dietary/pharmacology , Sympathetic Nervous System/drug effects , Angiotensin I/blood , Angiotensin I/genetics , Angiotensin I/metabolism , Angiotensin II/blood , Angiotensin II/genetics , Angiotensin II/metabolism , Angiotensinogen/blood , Angiotensinogen/metabolism , Angiotensins/blood , Angiotensins/metabolism , Animals , Gene Expression Regulation/drug effects , Hypertension/chemically induced , Hypertension/physiopathology , Kidney/drug effects , Kidney/innervation , Kidney/metabolism , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Renin/blood , Renin/genetics , Renin/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sympathetic Nervous System/physiology
15.
Braz J Med Biol Res ; 39(11): 1501-5, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17146563

ABSTRACT

Osteoporosis and its consequent fractures are a great social and medical problem mainly occurring in post-menopausal women. Effective forms of prevention and treatment of osteoporosis associated with lower costs and the least side effects are needed. Electrical fields are able to stimulate osteogenesis in fractures, but little is known about their action on osteoporotic tissue. The aim of the present study was to determine by bone densitometry the effects of electrical stimulation on ovariectomized female Wistar rats. Thirty rats (220 +/- 10 g) were divided into three groups: sham surgery (SHAM), bilateral ovariectomy (OVX) and bilateral ovariectomy + electrical stimulation (OVX + ES). The OVX + ES group was submitted to a 20-min session of a low-intensity pulsed electrical field (1.5 MHz, 30 mW/cm(2)) starting on the 7th day after surgery, five times a week (total = 55 sessions). Global, spine and limb bone mineral density were measured by dual-energy X-ray absorptiometry (DXA Hologic 4500A) before surgery and at the end of protocol (84 days after surgery). Electrical stimulation improved (P < 0.05) global (0.1522 +/- 0.002), spine (0.1502 +/- 0.003), and limb (0.1294 +/- 0.003 g/cm(2)) bone mineral density compared to OVX group (0.1447 +/- 0.001, 0.1393 +/- 0.002, and 0.1212 +/- 0.001, respectively). The OVX + ES group also showed significantly higher global bone mineral content (9.547 +/- 0.114 g) when compared to both SHAM (8.693 +/- 0.165 g) and OVX (8.522 +/- 0.207 g) groups (P < 0.05). We have demonstrated that electrical fields stimulate osteogenesis in ovariectomized female rats. Their efficacy in osteoporosis remains to be demonstrated.


Subject(s)
Bone Density , Electric Stimulation Therapy , Osteogenesis/physiology , Osteoporosis/therapy , Absorptiometry, Photon , Animals , Disease Models, Animal , Female , Ovariectomy , Rats , Rats, Wistar , Time Factors
16.
Braz. j. med. biol. res ; 39(11): 1501-1505, Nov. 2006. graf, tab
Article in English | LILACS | ID: lil-437830

ABSTRACT

Osteoporosis and its consequent fractures are a great social and medical problem mainly occurring in post-menopausal women. Effective forms of prevention and treatment of osteoporosis associated with lower costs and the least side effects are needed. Electrical fields are able to stimulate osteogenesis in fractures, but little is known about their action on osteoporotic tissue. The aim of the present study was to determine by bone densitometry the effects of electrical stimulation on ovariectomized female Wistar rats. Thirty rats (220 ± 10 g) were divided into three groups: sham surgery (SHAM), bilateral ovariectomy (OVX) and bilateral ovariectomy + electrical stimulation (OVX + ES). The OVX + ES group was submitted to a 20-min session of a low-intensity pulsed electrical field (1.5 MHz, 30 mW/cm²) starting on the 7th day after surgery, five times a week (total = 55 sessions). Global, spine and limb bone mineral density were measured by dual-energy X-ray absorptiometry (DXA Hologic 4500A) before surgery and at the end of protocol (84 days after surgery). Electrical stimulation improved (P < 0.05) global (0.1522 ± 0.002), spine (0.1502 ± 0.003), and limb (0.1294 ± 0.003 g/cm²) bone mineral density compared to OVX group (0.1447 ± 0.001, 0.1393 ± 0.002, and 0.1212 ± 0.001, respectively). The OVX + ES group also showed significantly higher global bone mineral content (9.547 ± 0.114 g) when compared to both SHAM (8.693 ± 0.165 g) and OVX (8.522 ± 0.207 g) groups (P < 0.05). We have demonstrated that electrical fields stimulate osteogenesis in ovariectomized female rats. Their efficacy in osteoporosis remains to be demonstrated.


Subject(s)
Animals , Female , Rats , Bone Density , Electric Stimulation Therapy , Osteogenesis/physiology , Osteoporosis/therapy , Absorptiometry, Photon , Disease Models, Animal , Ovariectomy , Rats, Wistar , Time Factors
17.
Braz J Med Biol Res ; 38(4): 577-82, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15962183

ABSTRACT

The objective of the present study was to evaluate the role of physical exercise as well as the influence of hydration with an isotonic sports drink on renal function in male Wistar rats. Four groups were studied over a period of 42 days: 1) control (N = 9); 2) physical exercise (Exe, N = 7); 3) isotonic drink (Drink, N = 8); 4) physical exercise + isotonic drink (Exe + Drink, N = 8). Physical exercise consisted of running on a motor-driven treadmill for 1 h/day, at 20 m/min, 5 days a week. The isotonic sports drink was a commercial solution used by athletes for rehydration after physical activity, 2 ml administered by gavage twice a day. Urine cultures were performed in all animals. Twenty-four-hour urine samples were collected in metabolic cages at the beginning and at the end of the protocol period. Urinary and plasma parameters (sodium, potassium, urea, creatinine, calcium) did not differ among groups. However, an amorphous material was observed in the bladders of animals in the Exe + Drink and Drink groups. Characterization of the material by Western blot revealed the presence of Tamm-Horsfall protein and angiotensin converting enzyme. Physical exercise and the isotonic drink did not change the plasma or urinary parameters measured. However, the isotonic drink induced the formation of intravesical matrix, suggesting a potential lithogenic risk.


Subject(s)
Beverages/adverse effects , Isotonic Solutions/adverse effects , Kidney Calculi/chemically induced , Kidney/physiology , Physical Conditioning, Animal , Rehydration Solutions/adverse effects , Animals , Biomarkers/blood , Biomarkers/urine , Blotting, Western , Male , Mucoproteins/urine , Rats , Rats, Wistar , Risk Factors , Uromodulin
18.
Braz. j. med. biol. res ; 38(4): 577-582, Apr. 2005. tab
Article in English | LILACS | ID: lil-398185

ABSTRACT

The objective of the present study was to evaluate the role of physical exercise as well as the influence of hydration with an isotonic sports drink on renal function in male Wistar rats. Four groups were studied over a period of 42 days: 1) control (N = 9); 2) physical exercise (Exe, N = 7); 3) isotonic drink (Drink, N = 8); 4) physical exercise + isotonic drink (Exe + Drink, N = 8). Physical exercise consisted of running on a motor-driven treadmill for 1 h/day, at 20 m/min, 5 days a week. The isotonic sports drink was a commercial solution used by athletes for rehydration after physical activity, 2 ml administered by gavage twice a day. Urine cultures were performed in all animals. Twenty-four-hour urine samples were collected in metabolic cages at the beginning and at the end of the protocol period. Urinary and plasma parameters (sodium, potassium, urea, creatinine, calcium) did not differ among groups. However, an amorphous material was observed in the bladders of animals in the Exe + Drink and Drink groups. Characterization of the material by Western blot revealed the presence of Tamm-Horsfall protein and angiotensin converting enzyme. Physical exercise and the isotonic drink did not change the plasma or urinary parameters measured. However, the isotonic drink induced the formation of intravesical matrix, suggesting a potential lithogenic risk.


Subject(s)
Animals , Male , Rats , Beverages/adverse effects , Isotonic Solutions/adverse effects , Kidney Calculi/chemically induced , Kidney/physiology , Physical Conditioning, Animal , Rehydration Solutions/adverse effects , Blotting, Western , Biomarkers/blood , Biomarkers/urine , Mucoproteins/urine , Rats, Wistar , Risk Factors
19.
Hypertension ; 38(3 Pt 2): 549-54, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11566929

ABSTRACT

Brain pathways controlling arterial pressure are distributed throughout the neuraxis and are organized in topographically selective networks. In this brief review, we will focus on the medulla oblongata. The nucleus tractus solitarius (NTS) is the primary site of cardiorespiratory reflex integration. It is well accepted that lesions or other perturbations in the NTS can result in elevations of arterial pressure (AP), with many of the associated features so commonly found in humans. However, recent studies have shown 2 distinct subpopulations of neurons within the NTS that can influence AP in opposite ways. Commissural NTS neurons located on the midline may contribute to maintenance of hypertension in spontaneously hypertensive rats (SHR), because small lesions in this area result in a very significant reduction in AP. Also involved in this blood pressure regulation network are 2 distinct regions of the ventrolateral medulla: caudal (CVLM) and rostral (RVLM). Neurons in CVLM are thought to receive baroreceptor input and to relay rostrally to control the activity of the RVLM. Projections from CVLM to RVLM are inhibitory, and a lack of their activity may contribute to development of hypertension. The RVLM is critical to the tonic and reflexive regulation of AP. In different experimental models of hypertension, RVLM neurons receive significantly more excitatory inputs. This results in enhanced sympathetic neuronal activity, which is essential for the development and maintenance of the hypertension.


Subject(s)
Hypertension/physiopathology , Medulla Oblongata/physiopathology , Animals , Disease Models, Animal , Humans , Neural Pathways/physiopathology
20.
Hypertension ; 34(4 Pt 2): 744-7, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10523353

ABSTRACT

The major aim of the present study was to evaluate the role of the rostral ventrolateral medulla (RVLM) in the maintenance of hypertension in rats subjected to long-term treatment with N(G)-nitro-L-arginine methyl ester (L-NAME) (70 mg/kg orally for 1 week). We inhibited or stimulated RVLM neurons with the use of drugs such as glycine, L-glutamate, or kynurenic acid in urethane-anesthetized rats (1.2 to 1.4 g/kg IV). Bilateral microinjection of glycine (50 nmol, 100 nL) into the RVLM of hypertensive rats produced a decrease in mean arterial blood pressure (MAP) from 158+/-4 to 71+/-4 mm Hg (P<0.05), which was similar to the decrease produced by intravenous administration of hexamethonium. In normotensive rats, glycine microinjection reduced MAP from 106+/-4 to 60+/-3 mm Hg (P<0.05). Glutamate microinjection into the RVLM produced a significant increase in MAP in both hypertensive rats (from 157+/-3 to 201+/-6 mm Hg) and normotensive rats (from 105+/-5 to 148+/-9 mm Hg). No change in MAP was observed in response to kynurenic acid microinjection into the RVLM in either group. These results suggest that hypertension in response to long-term L-NAME treatment is dependent on an increase in central sympathetic drive, mediated by RVLM neurons. However, glutamatergic synapses within RVLM are probably not involved in this response.


Subject(s)
Enzyme Inhibitors/pharmacology , Hypertension/physiopathology , Medulla Oblongata/physiopathology , NG-Nitroarginine Methyl Ester/pharmacology , Sympathetic Nervous System/physiopathology , Animals , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid/pharmacology , Glycine/pharmacology , Hypertension/etiology , Kynurenic Acid/pharmacology , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...