Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 46(1): 1673-1681, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28498560

ABSTRACT

Nicotine addiction is a worldwide epidemic that claims millions of lives each year. Genetic deletion of α5 nicotinic acetylcholine receptor (nAChR) subunits has been associated with increased nicotine intake, however, it remains unclear whether acute nicotine is less aversive or more rewarding, and whether mice lacking the α5 nAChR subunit can experience withdrawal from chronic nicotine. We used place conditioning and conditioned taste avoidance paradigms to examine the effect of α5 subunit-containing nAChR deletion (α5 -/-) on conditioned approach and avoidance behaviour in nondependent and nicotine-dependent and -withdrawn mice, and compared these motivational effects with those elicited after dopamine receptor antagonism. We show that nondependent α5 -/- mice find low, non-motivational doses of nicotine rewarding, and do not show an aversive conditioned response or taste avoidance to higher aversive doses of nicotine. Furthermore, nicotine-dependent α5 -/- mice do not show a conditioned aversive motivational response to withdrawal from chronic nicotine, although they continue to exhibit a somatic withdrawal syndrome. These effects phenocopy those observed after dopamine receptor antagonism, but are not additive, suggesting that α5 nAChR subunits act in the same pathway as dopamine and are critical for the experience of nicotine's aversive, but not rewarding motivational effects in both a nondependent and nicotine-dependent and -withdrawn motivational state. Genetic deletion of α5 nAChR subunits leads to a behavioural phenotype that exactly matches that observed after antagonizing dopamine receptors, thus we suggest that modulation of nicotinic receptors containing α5 subunits may modify dopaminergic signalling, suggesting novel therapeutic treatments for smoking cessation.


Subject(s)
Motivation , Phenotype , Receptors, Dopamine/metabolism , Receptors, Nicotinic/genetics , Tobacco Use Disorder/genetics , Animals , Gene Deletion , Male , Mice , Mice, Inbred C57BL , Receptors, Nicotinic/metabolism , Reward , Tobacco Use Disorder/metabolism , Tobacco Use Disorder/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...