Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Dent Mater ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944559

ABSTRACT

OBJECTIVE: To assess the influence of calcination process on the properties of minimally processed recycled 3Y-TZP, and to compare it with its commercial counterpart. METHODS: Non-milled 3Y-TZP waste was collected, fragmented and ball-milled to a granulometric < 5 µm. Half of the recycled powder was calcined at 900 °C. Recycled 3Y-TZP disks were uniaxially pressed and sintered to create two recycled groups: 1) Calcined and 2) Non-calcined to be compared with a commercial CAD/CAM milled 3Y-TZP. The microstructure of experimental groups was assessed through density (n = 6), scanning electron microscopy (n = 3) and energy-dispersive X-ray spectroscopy (n = 3); and the crystalline content was evaluated through X-ray diffraction (XRD) (n = 3). Optical and mechanical properties were investigated through reflectance tests (n = 10), and Vickers hardness, fracture toughness (n = 5), and biaxial flexural strength tests (n = 16), respectively. Fractographic analysis was performed to identify fracture origin and crack propagation. Statistical analyses were performed through ANOVA followed by Tukey´s test, and by Weibull statistics. RESULTS: Particle size distribution of recycled powder revealed an average diameter of ∼1.60 µm. The relative density of all experimental groups was > 98.15 % and XRD analysis exhibited a predominance of tetragonal-phase in both recycled groups, which were similar to the crystallographic pattern of the control group. Cross-section micrographs presented flaws on the non-calcined group, and a more homogeneous microstructure for the calcined and commercial groups. Commercial samples showed lower contrast-ratio and higher translucency-parameter than the recycled groups, where non-calcined presented higher translucency-parameter and lower contrast-ratio than its calcined counterpart. The commercial group presented higher fracture toughness and characteristic strength than the recycled groups. Moreover, the calcined group exhibited higher hardness, characteristic strength, and probability of survival at higher loads than the non-calcined group. Fractographic analysis depicted the presence of microstructural flaws in the non-calcined group, which may have acted as stress-raisers and led to failures at lower flexural strengths values. SIGNIFICANCE: The calcination process improved the microstructure, optical, and mechanical properties of the recycled 3Y-TZP.

2.
Article in English | MEDLINE | ID: mdl-37992148

ABSTRACT

BACKGROUND: Hierarchical micro-nano structured topography along with surface chemistry modifications of dental implants have been suggested to positively contribute to the osseointegration process. However, the effect of such surface modifications on the molecular response as well as bone formation rate and quality are still unclear, especially in the early healing period. This study aimed to evaluate the effect of coating a double acid etched (DAE) implant surface with nano-sized (20 nm) hydroxyapatite (Nano) with respect to gene expression, histologic parameters, and nanomechanical properties when compared to DAE control at 1 and 2 weeks after implant placement in a rodent femur model. MATERIAL AND METHODS: Expression of bone-related genes was determined by qRT-PCR (Col-I, Runx-2, Osx, Opn, Ocn, Alp). Histomorphometric evaluation of bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) within implant threads was performed using photomicrographs after histologic processing. Mechanical properties, reduced elastic modulus and hardness, were determined through nanoindentation. RESULTS: At 1 week, the Nano group demonstrated significantly higher expression of Col-I and Ocn compared to the DAE group, indicating upregulation of osteoprogenitor and osteoblast differentiation genes. At 2 weeks, Nano surface further exhibited enhanced gene expression of Col-I and Osx in comparison to the DAE surface, suggesting an increased mineralization of the newly formed bone. Nanoindentation analysis revealed that the Nano group presented no significant difference on the ranks of reduced elastic modulus and hardness compared to DAE for both timepoints. Histomorphometric analysis yielded no significant difference in the percentage of BIC and BAFO between the Nano and DAE surfaces at 1 and 2 weeks. However, Nano implants did present a higher mean value, ~50%, of BIC compared to DAE, ~30%, after 2 weeks in vivo. CONCLUSIONS: While no significant differences were observed in the amount and mechanical properties of newly formed bone, Nano surface positively and significantly increased the expression osteogenic genes compared to DAE surface at early healing periods.

3.
Med Oral Patol Oral Cir Bucal ; 28(1): e48-e55, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36173722

ABSTRACT

BACKGROUND: Successful osseointegration of endosteal dental implants has been attributed to implant design, including the macro-, micro- and nano- geometric properties. Based on current literature pertaining to implant design, the resultant cellular and bone healing response is unknown when the thread thickness of the implants is increased, resulting in an increased contact area in implants designed with healing chambers. The aim of this study was to evaluate the effect of two implant designs with different thread profiles on the osseointegration parameters and implant stability at 3- and 6-weeks in vivo using a well-established preclinical dog model. MATERIAL AND METHODS: A total of 48 type V Ti alloy implants were divided in two groups according to their thread design (D1= +0.1x/mm and D2= +0.15x/mm) and placed in an interpolated fashion into the radii of six beagles. Insertion torque was measured at time of placement, radii were extracted for histological processing following 3- and 6-week healing intervals. Histologic and histomorphometric analyses were performed in terms of bone to implant contact (%BIC) and bone area fraction occupancy within implant threads (%BAFO). Statistical analyses were performed through a linear mixed model with fixed factors of time and implant thread design. RESULTS: Surface roughness analysis demonstrated no significant differences in Sa and Sq between D1 and D2 implant designs, which confirmed that both implant designs were homogenous except for their respective thread profiles. For insertion torque, statistically significant lower values were recorded for D1 in comparison to D2 (59.6 ± 11.1 and 78.9 ± 10.1 N⋅cm, respectively). Furthermore, there were no significant differences with respect to histological analysis and histomorphometric parameters, between D1 and D2 at both time points. CONCLUSIONS: Both thread profiles presented equivalent potential to successfully osseointegrate in the osteotomies, with D2 yielding higher mechanical retention upon placement without detrimental bone resorption.


Subject(s)
Dental Implants , Osseointegration , Dogs , Animals , Torque , Dental Prosthesis Design , Dental Implantation, Endosseous/methods , Surface Properties
4.
Med Oral Patol Oral Cir Bucal ; 27(5): e468-e475, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35975804

ABSTRACT

BACKGROUND: We aimed to histomorphometrically evaluate the effects of Leucocyte-Platelet-Rich Fibrin (L-PRF), with and without the combination of a bone grafting material, for alveolar ridge preservation using an in vivo canine model. MATERIAL AND METHODS: Seven dogs (Female Beagles, ~18-month-old) were acquired for the study. L-PRF was prepared from each individual animal by drawing venous blood and spinning them through a centrifuge at 408 RCF-clot (IntrasSpin, Intra-Lock, Boca Raton, FL). L-PRF membranes were obtained from XPression fabrication kit (Biohorizons Implant Systems, Inc., AL, USA). A split mouth approach was adopted with the first molar mesial and distal socket defects treated in an interpolated fashion of the following study groups: 1) Empty socket (negative control); 2) OSS filled defect 3) L-PRF membrane; and 4) Mix of Bio-Oss® with L-PRF. After six weeks, samples were harvested, histologically processed, and evaluated for bone area fraction occupancy (BAFO), vertical/horizontal ridge dimensions (VRD and HRD, respectively), and area of coronal soft tissue infiltration. RESULTS: BAFO was statistically lower for the control group in comparison to all treatment groups. Defects treated with Bio-Oss® were not statistically different then defects treated solely with L-PRF. Collapsed across all groups, L-PRF exhibited higher degrees of BAFO than groups without L-PRF. Defects filled with Bio-Oss® and Bio-Oss® with L-PRF demonstrated greater maintenance of VRD relative to the control group. Collapsed across all groups, Bio-Oss® maintained the VRD and resulted in less area of coronal soft tissue infiltration compared to the empty defect. Soft tissue infiltration observed at the coronal area was not statistically different among defects filled with L-PRF, Bio-Oss®, and Bio-Oss® with L-PRF. CONCLUSIONS: Inclusion of L-PRF to particulate xenograft did not promote additional bone heading at 6 weeks in vivo. However, we noted that L-PRF alone promoted alveolar socket regeneration to levels comparable to particulate xenografts, suggesting its potential utilization for socket preservation.


Subject(s)
Bone Regeneration , Platelet-Rich Fibrin , Tooth Socket , Alveolar Process , Animals , Dogs , Female , Leukocytes , Molar , Tooth Extraction , Tooth Socket/surgery
5.
Med Oral Patol Oral Cir Bucal ; 26(6): e825-e833, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34564687

ABSTRACT

BACKGROUND: The goal of this study was to evaluate hard tissue response following guided bone regeneration using commercially available bovine bone grafts and collagen membranes; bilayer collagen membrane and porcine pericardium-based membrane, by means of a non-destructive three-dimensional (3D) computerized volumetric analysis following microtomography reconstruction. MATERIAL AND METHODS: Bone regenerative properties of various bovine bone graft materials were evaluated in the Göttingen minipig model. Two standardized intraosseous defects (15mm x 8mm x 8mm) were created bilaterally of the mandible of eighteen animals (n=72 defects). Groups were nested within the same subject and randomly distributed among the sites: (i) negative control (no graft and membrane), (ii) bovine bone graft/bilayer collagen membrane (BOB) (iii) Bio-Oss® bone graft/porcine pericardium-based membrane (BOJ) and (iv) cerabone® bone graft/porcine pericardium-based membrane (CJ). Samples were harvested at 4, 8, and 12-week time points (n=6 animal/time point). Segments were scanned using computerized microtomography (µCT) and three dimensionally reconstructed utilizing volumetric reconstruction software. Statistical analyses were performed using IBM SPSS with a significance level of 5%. RESULTS: From a temporal perspective, tridimensional evaluation revealed gradual bone ingrowth with the presence of particulate bone grafts bridging the defect walls, and mandibular architecture preservation over time. Volumetric analysis demonstrated no significant difference between all groups at 4 weeks (p>0.127). At 8 and 12 weeks there was a higher percentage of new bone formation for control and CJ groups when compared to BOB and BOJ groups (p<0.039). The natural bovine bone graft group showed more potential for graft resorption over time relative to bovine bone graft, significantly different between 4 and 8 weeks (p<0.003). CONCLUSIONS: Volumetric analysis yielded a favorable mandible shape with respect to time through the beneficial balance between graft resorption/bone regenerative capacity for the natural bovine bone graft.


Subject(s)
Bone Substitutes , Animals , Cattle , Bone Regeneration , Bone Substitutes/pharmacology , Collagen , Heterografts , Mandible/diagnostic imaging , Mandible/surgery , Membranes, Artificial , Swine , Swine, Miniature
6.
J Mech Behav Biomed Mater ; 123: 104690, 2021 11.
Article in English | MEDLINE | ID: mdl-34385065

ABSTRACT

OBJECTIVE: To characterize the effects of aging on the nanomechanical properties and 3D surface topographical parameters of an experimental Zirconia Toughened Alumina (ZTA) composite compared to its respective individual counterpart materials. METHODS: Disk-shaped specimens comprised of three material groups were processed: 1) ZTA 70/30 (70% alumina reinforced with 30% second-generation 3Y-TZP); 2) Zpex (Second-generation 3Y-TZP), and; 3) Al2O3 (High purity Alumina) (n = 10/material, 12 × 1 mm). After synthesis, ceramic powders were pressed, the green-body samples were sintered and polished. Nanoindentation testing was performed to record elastic modulus (E) and hardness (H). Interferometry was utilized to assess 3D surface roughness parameters (Sa, Sq), while X-ray diffraction (XRD) and scanning electron microscope (SEM) assessed the crystalline content and microstructure. All tests were performed before and after simulated aging (134°C, 2.2 bar, 20 h). Statistical analyses were performed using linear mixed-model and least square difference pos-hoc tests (α = 5%). RESULTS: XRD spectra indicated increase of monoclinic peaks for Zpex (~18%) relative to ZTA 70/30 (~2.5%) after aging. Additionally, aging did not affect the surface roughness parameters of ZTA 70/30 and Al2O3, although a significant increase in Sa was recorded for Zpex following aging (~90 nm) (p < 0.001). Al2O3 yielded the highest H and E values (H:21 GPa, E: 254 GPa), followed by ZTA 70/30 (H: 13 GPa, E: 214 GPa) and Zpex (H:11 GPa, E: 167 GPa), all significantly different (p < 0.03). CONCLUSION: ZTA 70/30 and Al2O3 presented high hydrothermal stability with respect to all evaluated variables, where artificial aging significantly increased the monoclinic content and surface roughness of Zpex.


Subject(s)
Aluminum Oxide , Yttrium , Ceramics , Dental Materials , Materials Testing , Surface Properties , Zirconium
7.
Dent Mater ; 36(12): e365-e374, 2020 12.
Article in English | MEDLINE | ID: mdl-32943230

ABSTRACT

OBJECTIVE: To evaluate the effect of aging on the microstructural, mechanical, and optical properties of an experimental zirconia-toughened alumina composite with 80%Al2O3 and 20%ZrO2 (ZTA Zpex) compared to a translucent zirconia (Zpex) and Alumina. METHODS: Disc-shaped specimens were obtained by uniaxial and isostatic pressing the synthesized powders (n = 70/material). After sintering and polishing, half of the specimens underwent aging (20 h, 134 °C, 2.2 bar). Crystalline content and microstructure were evaluated using X-ray diffraction and scanning electron microscopy, respectively. Specimens underwent biaxial flexural strength testing to determine the characteristic stress, Weibull modulus, and reliability. Translucency parameter (TP) and Contrast ratio (CR) were calculated to characterize optical properties. RESULTS: ZTA Zpex demonstrated a compact surface with a uniform dispersion of zirconia particles within the alumina matrix, and typical alumina and zirconia crystalline content. ZTA Zpex and alumina exhibited higher CR and lower TP than Zpex. ZTA Zpex and Zpex showed significantly higher characteristic stress relative to alumina. While aging did not affect optical and mechanical properties of ZTA Zpex and alumina, Zpex demonstrated a significant increase in translucency, as well as a in characteristic stress. Alumina reliability was significantly lower than others at 300 MPa, ZTA Zpex and Zpex reliability decreased at 800 MPa, except for aged Zpex. SIGNIFICANCE: While aging did not affect the mechanical nor the optical properties of ZTA Zpex and alumina, it did alter both properties of Zpex. The results encourage further investigations to engineer ZTA as a framework material for long span fixed dental prostheses specially where darkened substrates, such as titanium implant abutments or endodontically treated teeth, demand masking.


Subject(s)
Aluminum Oxide , Zirconium , Ceramics , Dental Materials , Materials Testing , Reproducibility of Results , Surface Properties
8.
J Mech Behav Biomed Mater ; 104: 103659, 2020 04.
Article in English | MEDLINE | ID: mdl-32174417

ABSTRACT

PURPOSE: To synthesize a zirconia-toughened alumina (ZTA) composite with 85% alumina matrix reinforced by 15% zirconia and to characterize its optical and mechanical properties before and after artificial aging, to be compared with a conventional dental zirconia (3Y-TZP). MATERIAL AND METHODS: After syntheses, ZTA and 3Y-TZP powders were uniaxially and isostatically pressed. Green-body samples were sintered and polished to obtain 80 disc-shaped specimens per group (12 × 1 mm, ISO 6872:2015). The crystalline content and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Optical properties were determined by the calculation of contrast ratio (CR) and translucency parameter (TP) using reflectance data. Mechanical properties were assessed by Vickers hardness, fracture toughness and biaxial flexural strength test (BFS). All analyses were conducted before and after artificial aging (20h, 134 °C, 0.22 MPa). Optical parameters and microhardness differences were evaluated through repeated-measures analysis of variance (p < 0.05). BFS data were analyzed using Weibull statistics (95% CI). RESULTS: The synthesis of the experimental ZTA composite was successful, with 98% of theoretical density, as shown in the SEM images. XRD patterns revealed typical zirconia and alumina crystalline phases. ZTA optical properties parameters showed no effect of aging, with a high CR and low TP values denoting a high masking-ability. 3Y-TZP presented lower masking-ability and aging significantly affected its optical properties. ZTA Vickers hardness, fracture toughness and Weibull parameters, including characteristic stress and Weibull modulus were not influenced by aging, while 3Y-TZP presented a significant decrease in characteristic stress and increase in fracture toughness after aging. The ZTA probability of survival for missions of 300 and 500 MPa was estimated at ~99% validating its use for 3-unit posterior fixed dental prostheses (FDP), and no different from conventional 3Y-TZP. At high-stress mission (800 MPa) a significant decrease in probability of survival was observed for aged 3Y-TZP (84%) and for immediate and aged ZTA (73 and 82% respectively). CONCLUSION: The ZTA composite presented a dense microstructure, with preservation of the crystalline content, optical and mechanical properties after artificial aging, which encourages future research to validate its potential use for large span FDP.


Subject(s)
Aluminum Oxide , Dental Prosthesis , Ceramics , Dental Materials , Materials Testing , Surface Properties , Yttrium , Zirconium
SELECTION OF CITATIONS
SEARCH DETAIL
...