Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neuro Oncol ; 19(4): 503-513, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28062831

ABSTRACT

Background: Glioblastoma (GBM) is one of the most lethal tumor types. Hypercellular regions, named pseudopalisades, are characteristic in these tumors and have been hypothesized to be waves of migrating glioblastoma cells. These "waves" of cells are thought to be induced by oxygen and nutrient depletion caused by tumor-induced blood vessel occlusion. Although the universal presence of these structures in GBM tumors suggests that they may play an instrumental role in GBM's spread and invasion, the recreation of these structures in vitro has remained challenging. Methods: Here we present a new microfluidic model of GBM that mimics the dynamics of pseudopalisade formation. To do this, we embedded U-251 MG cells within a collagen hydrogel in a custom-designed microfluidic device. By controlling the medium flow through lateral microchannels, we can mimic and control blood-vessel obstruction events associated with this disease. Results: Through the use of this new system, we show that nutrient and oxygen starvation triggers a strong migratory process leading to pseudopalisade generation in vitro. These results validate the hypothesis of pseudopalisade formation and show an excellent agreement with a systems-biology model based on a hypoxia-driven phenomenon. Conclusions: This paper shows the potential of microfluidic devices as advanced artificial systems capable of modeling in vivo nutrient and oxygen gradients during tumor evolution.


Subject(s)
Brain Neoplasms/blood supply , Brain Neoplasms/physiopathology , Glioblastoma/blood supply , Glioblastoma/physiopathology , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Cell Hypoxia , Cell Line, Tumor , Humans , Microfluidics , Models, Neurological
2.
Biomicrofluidics ; 8(6): 064105, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25553182

ABSTRACT

A new microfluidic cell culture device compatible with real-time nuclear magnetic resonance (NMR) is presented here. The intended application is the long-term monitoring of 3D cell cultures by several techniques. The system has been designed to fit inside commercially available NMR equipment to obtain maximum readout resolution when working with small samples. Moreover, the microfluidic device integrates a fibre-optic-based sensor to monitor parameters such as oxygen, pH, or temperature during NMR monitoring, and it also allows the use of optical microscopy techniques such as confocal fluorescence microscopy. This manuscript reports the initial trials culturing neurospheres inside the microchamber of this device and the preliminary images and spatially localised spectra obtained by NMR. The images show the presence of a necrotic area in the interior of the neurospheres, as is frequently observed in histological preparations; this phenomenon appears whenever the distance between the cells and fresh nutrients impairs the diffusion of oxygen. Moreover, the spectra acquired in a volume of 8 nl inside the neurosphere show an accumulation of lactate and lipids, which are indicative of anoxic conditions. Additionally, a basis for general temperature control and monitoring and a graphical control software have been developed and are also described. The complete platform will allow biomedical assays of therapeutic agents to be performed in the early phases of therapeutic development. Thus, small quantities of drugs or advanced nanodevices may be studied long-term under simulated living conditions that mimic the flow and distribution of nutrients.

3.
Lab Chip ; 13(7): 1422-30, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23407672

ABSTRACT

While novel influential concepts in neuroscience bring the focus to local activities generated within a few tens of cubic micrometers in the brain, we are still devoid of appropriate tools to record and manipulate pharmacologically neuronal activity at this fine scale. Here we designed, fabricated and encapsulated microprobes for simultaneous depth recording and drug delivery using exclusively the polymer SU-8 as structural material. A tetrode- and linear-like electrode patterning was combined for the first time with single and double fluidic microchannels for independent drug delivery. The device was tested experimentally using the in vivo anesthetized rat preparation. Both probe types successfully recorded detailed spatiotemporal features of local field potentials and single-cell activity at a resolution never attained before with integrated fluidic probes. Drug delivery was achieved with high spatial and temporal precision in a range from tens of nanoliters to a few microliters, as confirmed histologically. These technological advancements will foster a wide range of neural applications aimed at simultaneous monitoring of brain activity and delivery at a very precise micrometer scale.


Subject(s)
Brain/physiology , Drug Carriers/metabolism , Electrophysiological Phenomena , Epoxy Compounds/metabolism , Microtechnology/methods , Molecular Probes/metabolism , Polymers/metabolism , Animals , Brain/cytology , Neurons/cytology , Rats , Time Factors
4.
Biosens Bioelectron ; 37(1): 1-5, 2012.
Article in English | MEDLINE | ID: mdl-22633740

ABSTRACT

Here, we describe new fabrication methods aimed to integrate planar tetrode-like electrodes into a polymer SU-8 based microprobe for neuronal recording applications. New concepts on the fabrication sequences are introduced in order to eliminate the typical electrode-tissue gap associated to the passivation layer. Optimization of the photolithography technique and high step coverage of the sputtering process have been critical steps in this new fabrication process. Impedance characterization confirmed the viability of the electrodes for reliable neuronal recordings with values comparable to commercial probes. Furthermore, a homogeneous sensing behavior was obtained in all the electrodes of each probe. Finally, in vivo action potential and local field potential recordings were successfully obtained from the rat dorsal hippocampus. Peak-to-peak amplitude of action potentials ranged from noise level to up to 400-500 µV. Moreover, action potentials of different amplitudes and shapes were recorded from all the four recording sites, suggesting improved capability of the tetrode to distinguish from different neuronal sources.


Subject(s)
Epoxy Compounds/chemistry , Microelectrodes , Microtechnology/methods , Neurons/physiology , Polymers/chemistry , Action Potentials , Animals , Dielectric Spectroscopy , Equipment Design , Hippocampus/cytology , Rats
5.
Biosens Bioelectron ; 32(1): 259-65, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22226408

ABSTRACT

Our POC (Point of Care) device is intended to be a diagnostic tool for routine use in the clinical sector. The validation of the whole procedure, including bacterial genomic DNA isolation and the Real Time detection of Salmonella spp., was conducted on 29 clinical stool samples that had been diagnosed with Salmonella spp. by a routine culture technique. The entire process was achieved in a single microfluidic chip within 35 min. In comparison to the culture reference method that is used in the clinical laboratories, this new device performed well in regards to the analytical parameters of sensitivity, specificity and accuracy. Therefore, the POC device reported in this study proved to be very appropriate for the fully integrated analysis system. To the best of our knowledge, this is the first work to report the sample preparation and followed by Real Time PCR (Polymerase Chain Reaction) on a single 2.5 µl chamber chip for the detection of Salmonella spp. bacteria in stool samples.


Subject(s)
DNA, Bacterial/analysis , Microfluidic Analytical Techniques/instrumentation , Point-of-Care Systems , Real-Time Polymerase Chain Reaction/instrumentation , Salmonella/isolation & purification , DNA, Bacterial/genetics , Equipment Design , Humans , Salmonella/genetics , Salmonella Infections/diagnosis , Sensitivity and Specificity
6.
Lab Chip ; 9(11): 1495-9, 2009 Jun 07.
Article in English | MEDLINE | ID: mdl-19458852

ABSTRACT

This paper describes how sixteen partners from eight different countries across Europe are working together in two EU projects focused on the development of a point of care system. This system uses disposable Lab on a Chips (LOCs) that carry out the complete assay from sample preparation to result interpretation of raw samples. The LOC is either embedded in a flexible motherboard with the form of a smartcard (Labcard) or in a Skinpatch. The first project, OPTOLABCARD, extended and tested the use of a thick photoresit (SU-8) as a structural material to manufacture LOCs by lamination. This project produced several examples where SU-8 microfluidic circuitry revealed itself as a viable material for several applications, such as the integration on chip of a Polymerase Chain Reaction (PCR) that includes sample concentration, PCR amplification and optical detection of Salmonella spp. using clinical samples. The ongoing project, LABONFOIL, is using two results of OPTOLABCARD: the sample concentration method and the capability to fabricate flexible and ultra thin LOCs based on sheets instead of wafers. This rupture from the limited and expensive wafer surface heritage allows the development of a platform where LOCs are big enough to include all the sample preparation subcomponents at a low price. These LOCs will be used in four point of care applications: environment, food, cancer and drug monitoring. The user will obtain the results of the tests by connecting the Labcard/Skinpatch reader to a very popular interface (a smartphone), creating a new instrument namely "The SmartBioPhone". All standard smartphone capabilities will be at the disposal of the point of care instrument by a simple click. In order to guarantee the future mass production of these LOCs, the project will develop a large dry film equipment where LOCs will be fabricated at a low cost.


Subject(s)
Lab-On-A-Chip Devices , Micro-Electrical-Mechanical Systems/instrumentation , Point-of-Care Systems , Europe , International Cooperation , User-Computer Interface
7.
Electrophoresis ; 27(18): 3627-34, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16977684

ABSTRACT

This work describes the SDS-CGE of proteins carried out in microchannels made of the negative photoresist EPON SU-8. Embedded electrophoretic microchannels have been fabricated with a multilayer technology based on bonding and releasing steps of stacked SU-8 films. This technology allows the monolithic integration of the electrodes in the device. A high wafer fabrication yield and mass production compatibility guarantees low costs and high reliability. A poly(methyl methacrylate) (PMMA) packaging allows an easy setup and replacement of the device for electrophoresis experiments. In addition, the wire-bonding step is avoided. The electrophoretic mobilities of four proteins have been measured in microchannels filled with polyacrylamide. Different pore sizes have been tested obtaining their Ferguson plots. Finally, a separation of two proteins (20 and 36 kDa) has been carried out confirming that this novel device is suitable for protein separation. A resolution of 2.75 is obtained. This is the first time that this SU-8 microfluidic technology has been validated for SDS-CGE of proteins. This technology offers better separation performance than glass channels, at lower costs and with an easy packaging procedure.


Subject(s)
Electrophoresis, Capillary/methods , Electrophoresis, Polyacrylamide Gel/methods , Proteins/analysis , Electrodes , Electrophoresis, Capillary/instrumentation , Electrophoresis, Polyacrylamide Gel/instrumentation , Humans , Miniaturization , Polymethyl Methacrylate/chemistry , Proteins/isolation & purification , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...