Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aquac Nutr ; 2023: 5528942, 2023.
Article in English | MEDLINE | ID: mdl-36909926

ABSTRACT

Atlantic salmon with a start weight of 53 g were fed diets with different levels of EPA and DHA or a diet with 1 : 1 EPA+DHA (0%, 1.0%, and 2.0% of the diet). At 400 g, all fish groups were mixed and equally distributed in new tanks and fed three diets with 0.2%, 1.0%, or 1.7% of EPA+DHA. At 1200 g, the fish were transferred to seawater pens where they were fed the same three diets until they reached a slaughter size of 3.5 kg. The fillet concentration of astaxanthin and its metabolite idoxanthin was analysed before transfer to seawater pens at 1200 g and at slaughter. The fatty acid composition in the fillet was also analysed at the same time points. Salmon fed low levels of EPA and DHA had lower fillet astaxanthin concentration and higher metabolic conversion of astaxanthin to idoxanthin compared to salmon fed higher dietary levels of EPA and/or DHA. DHA had a more positive effect on fillet astaxanthin concentrations than EPA. There were positive correlations between fillet DHA, EPA, sum N-3 fatty acids, and fillet astaxanthin concentration. A negative correlation was found between the concentration of N-6 fatty acids in the fillet and the astaxanthin concentration.

2.
Comp Biochem Physiol B Biochem Mol Biol ; 127(3): 423-32, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11126773

ABSTRACT

Apparent astaxanthin (3,3'-dihydroxy-beta,beta-carotene-4,4'-dione) digestibility coefficients (ADC) and carotenoid compositions of the muscle, liver, whole kidney and plasma were compared in Atlantic salmon (Salmo salar) and Atlantic halibut (Hippoglossus hippoglossus) fed a diet supplemented with 66 mg astaxanthin kg(-1) dry matter for 112 days. The astaxanthin source consisted of 75% all-E-, 3% 9Z- and 22% 13Z-astaxanthin, of (3R,3'R)-, (3R,3'S; meso)-, and (3S,3'S)-astaxanthin in a 1:2:1 ratio. The ADC of astaxanthin was significantly higher in Atlantic halibut than in Atlantic salmon after 56 and 112 days of feeding (P < 0.05). The ADC of all-E-astaxanthin was significantly higher than ADC of 9Z-astaxanthin (P < 0.05). Considerably more carotenoids were present in all plasma and tissue samples of salmon than in halibut. Retention of astaxanthin in salmon muscle was 3.9% in salmon and 0 in halibut. All-E-astaxanthin accumulated selectively in the muscle of salmon, and in plasma of salmon and halibut compared with diet. 13Z-astaxanthin accumulated selectively in liver and whole kidney of salmon and halibut, when compared with plasma. A reductive pathway for astaxanthin metabolism in halibut similar to that of salmon was shown by the presence of 3',4'-cis and trans glycolic isomers of idoxanthin (3,3',4'-trihydroxy-beta,beta-carotene-4'-one) in plasma, liver and whole kidney. In conclusion, the higher ADC of astaxanthin in halibut than Atlantic salmon may be explained by lower feed intake in halibut, and the lower retention of astaxanthin by a higher capacity to transform astaxanthin metabolically.


Subject(s)
Fishes/metabolism , Salmo salar/metabolism , beta Carotene/analogs & derivatives , beta Carotene/metabolism , Animals , Atlantic Ocean , Carotenoids/metabolism , Isomerism , Molecular Structure , Xanthophylls
SELECTION OF CITATIONS
SEARCH DETAIL
...