Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Invest Dermatol ; 96(6): 903-7, 1991 Jun.
Article in English | MEDLINE | ID: mdl-2045678

ABSTRACT

To investigate the effect of visible light on the level of UV-induced thymine dimers in human epidermal cells in vivo, we exposed volunteers to UV-B alone, or to a serial combination of UV-B and visible light. Dimers were assayed in skin sections by immunofluorescence microscopy with a monoclonal antibody against the cyclobutyl thymine dimer. The dimer-specific fluorescence from epidermal cell nuclei, identified by counterstaining with propidium iodide, was quantified through computer-mediated image processing and analysis. After a single UV exposure (2-3 MED), significant dimer-specific fluorescence was measured, but no difference could be detected between skin kept in the dark after UV-irradiation and that exposed to visible light. In three other experiments, the UV dose was split into 3 parts (1 MED each), given at 2.5-h intervals. Half of the skin area was exposed to visible light following each dose fraction. After the second and third dose fractions, skin areas treated with visible light clearly showed lower levels of dimers (i.e., about 40% reduced) than skin kept in the dark. The results provide evidence that photorepair of dimers does occur in human skin, but not immediately after a first UV exposure of naive skin.


Subject(s)
DNA Repair/radiation effects , Epidermis/radiation effects , Light , Pyrimidine Dimers/metabolism , Ultraviolet Rays/adverse effects , Antibodies, Monoclonal , Dose-Response Relationship, Radiation , Epidermis/metabolism , Humans , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence , Pyrimidine Dimers/radiation effects
2.
Cancer Res ; 50(6): 1905-10, 1990 Mar 15.
Article in English | MEDLINE | ID: mdl-2306742

ABSTRACT

UV-induced thymine dimers (10 J/m2 of UV-C) were assayed in normal human and xeroderma pigmentosum (XP) fibroblasts with a monoclonal antibody against these dimers and quantitative fluorescence microscopy. In repair-proficient cells dimer-specific immunofluorescence gradually decreased with time, reaching about 25% of the initial fluorescence after 27 h. Rapid disappearance of dimers was observed in cells which had been microinjected with yeast photoreactivating enzyme prior to UV irradiation. This photoreactivation (PHR) was light dependent and (virtually) complete within 15 min of PHR illumination. In general, PHR of dimers strongly reduces UV-induced unscheduled DNA synthesis (UDS). However, when PHR was applied immediately after UV irradiation, UDS remained unchanged initially; the decrease set in only after 30 min. When PHR was performed 2 h after UV exposure, UDS dropped without delay. An explanation for this difference is preferential removal of some type(s) of nondimer lesions, e.g., (6-4) photoproducts, which is responsible for the PHR-resistant UDS immediately following UV irradiation. After the rapid removal of these photoproducts, the bulk of UDS is due to dimer repair. From the rapid effect of dimer removal by PHR on UDS it can be deduced that the excision of dimers up to the repair synthesis step takes considerably less than 30 min. Also in XP fibroblasts of various complementation groups the effect of PHR was investigated. The immunochemical dimer assay showed rapid PHR-dependent removal comparable to that in normal cells. However, the decrease of (residual) UDS due to PHR was absent (in XP-D) or much delayed (in XP-A and -E) compared to normal cells. This supports the idea that in these XP cells preferential repair of nondimer lesions does occur, but at a much lower rate.


Subject(s)
DNA Repair , DNA Replication , Deoxyribodipyrimidine Photo-Lyase/metabolism , Lyases/metabolism , Pyrimidine Dimers/metabolism , Cells, Cultured , DNA/radiation effects , Deoxyribodipyrimidine Photo-Lyase/administration & dosage , Dose-Response Relationship, Radiation , Fibroblasts/metabolism , Fibroblasts/radiation effects , Humans , Kinetics , Microinjections , Reference Values , Ultraviolet Rays , Xeroderma Pigmentosum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...