Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37631397

ABSTRACT

To the best of our knowledge, this study reports the first direct electropolymerization of a dicyanobenzene-carbazole dye functionalized with an imidazole group to prepare redox- and photoactive porous organic polymer (POP) films in controlled amounts. The POP films were grown on indium-doped tin oxide (ITO) and carbon surfaces using a new monomer, 1-imidazole-2,4,6-tri(carbazol-9-yl)-3,5-dicyanobenzene (1, 3CzImIPN), through a simple one-step process. The structure and activities of the POP films were investigated as photoelectrodes for electrooxidations, as heterogeneous photocatalysts for photosynthetic olefin isomerizations, and for solid-state photoluminescence behavior tunable by lithium-ion concentrations in solution. The results demonstrate that the photoredox-POPs can be used as efficient photocatalysts, and they have potential applications in sensing.

2.
ACS Appl Mater Interfaces ; 15(21): 25624-25632, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37184980

ABSTRACT

The electrolysis of water to form hydrogen and oxygen is a promising method to store renewable energy. This method requires electrodes that convert water into protons, electrons, and oxygen. We report a multifunctional polymer that conducts electrons and ions and may coreact with the electrocatalyst in the oxygen evolution reaction (OER). The electrodes were prepared in two steps from off-the-shelf reagents. They operate with low loadings of abundant catalysts and are among the most active (100 mA cm-2 at 1.43 V vs RHE (1.41 V, iR-corrected)) and stable electrodes, reported to date under harsh conditions (85 °C, 6 M KOH, 120 h (0.69% loss over the first 14.5 h and then 0.61% loss over 105.5 h)). Control experiments on glassy carbon electrodes showed that the polycarbazole system significantly outperformed a Nafion system of the same catalyst loading. This simple strategy can be applied to other types of electrodes.

3.
ACS Nano ; 17(9): 8705-8716, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37068128

ABSTRACT

Substrate-supported catalysts with atomically dispersed metal centers are promising for driving the carbon dioxide reduction reaction (CO2RR) to produce value-added chemicals; however, regulating the size of exposed catalysts and optimizing their coordination chemistry remain challenging. In this study, we have devised a simple and versatile high-energy pulsed laser method for the enrichment of a Bi "single atom" (SA) with a controlled first coordination sphere on a time scale of nanoseconds. We identify the mechanistic bifurcation routes over a Bi SA that selectively produce either formate or syngas when bound to C or N atoms, respectively. In particular, C-stabilized Bi (Bi-C) exhibits a maximum formate partial current density of -29.3 mA cm-2 alongside a TOF value of 2.64 s-1 at -1.05 V vs RHE, representing one of the best SA-based candidates for CO2-to-formate conversion. Our results demonstrate that the switchable selectivity arises from the different coupling states and metal-support interactions between the central Bi atom and adjacent atoms, which modify the hybridizations between the Bi center and *OCHO/*COOH intermediates, alter the energy barriers of the rate-determining steps, and ultimately trigger the branched reaction pathways after CO2 adsorption. This work demonstrates a practical and universal ultrafast laser approach to a wide range of metal-substrate materials for tailoring the fine structures and catalytic properties of the supported catalysts and provides atomic-level insights into the mechanisms of the CO2RR on ligand-modified Bi SAs, with potential applications in various fields.

4.
ACS Appl Mater Interfaces ; 13(15): 17745-17752, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33826282

ABSTRACT

The organic carbazole-cyanobenzene push-pull dye 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene was derivatized and attached to carbon or indium-doped tin oxide (ITO) electrodes by simple diazonium electrografting. The surface-bound dye is active and stable for the visible light photosynthetic isomerization of a wide range of functionalized stilbene and cinnamic acid derivatives. Up to 87,000 net turnovers were obtained for the isomerization of trans-stilbene. The isomerizations can be carried out in air with a 33% reduction in the rate. The ITO photoelectrodes are also active and stable toward photo-oxidations under basic and acidic conditions.

5.
Dalton Trans ; 49(29): 10173-10184, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32666974

ABSTRACT

1,10-Phenanthroline (phen) was grafted to either indium tin oxide (ITO), fluorine-doped tin oxide (FTO), or titanium dioxide (TiO2) semiconductors (SC's) by electrochemical reduction of 5-diazo-phen. The phen ligand is bonded to the semiconductor at C5, and it can be handled in air. The semiconductor-phen (SC-phen) complexes displace both CH3CN ligands from either cis-[Ru(Mebipy)2(CH3CN)2]2+ (Mebipy = 4,4'-methyl-2,2'-bipyridine), cis-[Ru(tBubipy)2(CH3CN)2]2+ (tBubipy = 4,4'-tert-butyl-2,2'-bipyridine), or cis-[Ru(pheno)(bipy)(CH3CN)2]2+ (bipy = 2,2'-bipyridine; pheno = 1,10-phenanthroline-5,6-dione) dissolved in DCM/THF (4 h, 70 °C) to form the corresponding surface-bound SC-[(phen)Ru(bipyridyl)2]2+ chromophores. The identities of the SC-[(phen)Ru(Mebipy)2]2+, SC-[(phen)Ru(tBubipy)2]2+, and SC-[(phen)Ru(pheno)(bipy)]2+ (SC = ITO, FTO or TiO2) chromophores were confirmed by X-ray photoelectron spectroscopy (XPS); inductively coupled plasma mass spectrometry (ICP-MS); UV-vis and reflectance infrared spectroscopies; and cyclic voltammetry (CV). The data were compared to analogous Ru-polypyridyl control compounds dissolved in solution. A facile ketone-amine condensation solid-phase synthesis reaction between SC-[(phen)Ru(pheno)(bipy)]2+ and [Ru(1,10-phenthroline-5,6-diamine)(bipy)2]2+ in ethanol (80 °C, 1 h) formed the dinuclear, bound chromophore SC-[(phen)(bipy)Ru(tpphz)Ru(bipy)2]4+ (tpphz = tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine). Photoelectrochemical oxidation of hydroquinone and triethylamine under acidic, neutral, or basic conditions showed that the SC-chromophore photoanodes are active, and that TiO2-[(phen)Ru(Mebipy)2]2+ is the most active and stable under basic- and neutral conditions. The dinuclear chromophore SC-[(phen)(bipy)Ru(tpphz)Ru(bipy)2]4+ was most active and stable under potentiostatic conditions in acid.

6.
ACS Omega ; 4(7): 12212-12221, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31460336

ABSTRACT

A cross-linked catalyst organic framework was prepared by an alternating ring-opening olefin metathesis polymerization between dichloro{N,N'-bis({(2-diphenylphosphino)phenyl}methylidene)bicyclo[2.2.1]-hept-5-ene-2,3-diamine}ruthenium, 1,2-N-di(cis-5-norbornene-2,3-endo-dicarboximido)-ethane, and cis-cyclooctene catalyzed by RuCl2(=CHPh)(PCy3)2 in the presence of a BaSO4 support. The heterogenized catalyst hydrogenated methyl benzoate at a similar rate to the homogeneous catalyst (0.0025 mol % catalyst, 10 mol % KO t Bu, 80 °C, 50 atm, tetrahydrofuran, 21 h, ∼15 000 turnovers during the first 1 h). The catalyst was used five times for a total of 121 680 turnovers. A study on the reusability of this catalyst showed that ester hydrogenations with bifunctional catalysts slow as the reaction proceeds. This inhibition is removed by isolating and reusing the catalyst, suggesting that future catalyst design should emphasize avoiding product inhibition.

7.
ACS Appl Mater Interfaces ; 10(29): 24533-24542, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29969554

ABSTRACT

1,10-phenanthroline is grafted to indium tin oxide (ITO) and titanium dioxide nanoparticle (TiO2) semiconductors by electroreduction of 5-diazo-1,10-phenanthroline in 0.1 M H2SO4. The lower and upper potential limits (-0.20 and 0.15 VSCE, respectively) were set to avoid reduction and oxidation of the 1,10-phenanthroline (phen) covalently grafted at C5 to the semiconductor. The resulting semiconductor-phen ligand (ITO-phen or TiO2-phen) was air stable, and was bonded to Ru- or Ir- by reaction with cis-[Ru(bpy)2(CH3CN)2]2+ (bpy = 2,2'-bipyridine) or cis-[Ir(ppy)2(CH3CN)2]+ (ppy = ortho-Cphenyl metalated 2-phenylpyridine) in CH2Cl2 and THF solvent at 50 °C. Cyclic voltammetry, X-ray photoelectron spectroscopy, solid-state UV-vis, and inductively coupled plasma-mass spectrometry all confirmed that the chromophores SC-[(phen)Ru(bpy)2]2+ and SC-[(phen)Ir(ppy)2]+ (SC = ITO or TiO2) formed in near quantitative yields by these reactions. The resulting photoanodes were active and relatively stable to photoelectrochemical oxidation of hydroquinone and triethylamine under neutral and basic conditions.

8.
J Am Chem Soc ; 139(8): 3065-3071, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28134529

ABSTRACT

High-throughput screening and lab-scale optimization were combined to develop the catalytic system trans-RuCl2((S,S)-skewphos)((R,R)-dpen), 2-PrONa, and 2-PrOH. This system hydrogenates functionalized α-phenoxy and related amides at room temperature under 4 atm H2 pressure to give chiral alcohols with up to 99% yield and in greater than 99% enantiomeric excess via dynamic kinetic resolution.

9.
J Am Chem Soc ; 135(23): 8578-84, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23688123

ABSTRACT

Mono- or dideprotonation at the N-H groups of the Noyori ketone hydrogenation catalyst trans-[RuH2((R)-BINAP)((R,R)-dpen)] (1a) yields trans-M[RuH2((R,R)-HNCH(Ph)CH(Ph)NH2)((R)-BINAP)], where M = K(+)(8-K) or Li(+) (8-Li), or trans-M2[RuH2((R,R)-HNCH(Ph)CH(Ph)NH)((R)-BINAP)], where M = Li(+) (8-M'2), which have unprecedented activity toward the hydrogenation of amide and imide carbonyls at low temperatures in THF-d8. Details of the origins of the enantioselection for the desymmetrization of meso-cyclic imides by hydrogenation with 8-K are also described herein.


Subject(s)
Alcohols/chemical synthesis , Amides/chemistry , Imides/chemistry , Ketones/chemistry , Organometallic Compounds/chemistry , Temperature , Alcohols/chemistry , Catalysis , Hydrogenation , Molecular Structure , Ruthenium/chemistry , Stereoisomerism
11.
J Am Chem Soc ; 133(25): 9666-9, 2011 Jun 29.
Article in English | MEDLINE | ID: mdl-21634401

ABSTRACT

The transition state for the metal-ligand bifunctional addition step in Noyori's enantioselective ketone hydrogenation was investigated using intramolecular trapping experiments. The bifunctional addition between the Ru dihydride trans-[Ru((R)-BINAP)(H)(2)((R,R)-dpen)] and the hydroxy ketone 4-HOCH(2)C(6)H(4)(CO)CH(3) at -80 °C exclusively formed the corresponding secondary ruthenium alkoxide trans-[Ru((R)-BINAP)(H)(4-HOCH(2)C(6)H(4)CH(CH(3))O)((R,R)-dpen)]. Combined with the results of control experiments, this observation provides strong evidence for the formation of a partial Ru-O bond in the transition state.

12.
Org Lett ; 13(13): 3522-5, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21627077

ABSTRACT

The intramolecular cycloisomerization of 1,6-enynes in 95-99% ee is reported using an immobilized Rh catalyst-organic framework synthesized from alternating ring-opening metathesis polymerization (altROMP) assembly. The framework was reused up to seven times, and it was used in high turnover number (TON) batch reactions. The catalyst provided the highest TONs to date (up to 890) for the cycloisomerizations, with catalyst loadings ranging from 0.2 to 0.06 mol %.

13.
J Am Chem Soc ; 132(37): 12832-4, 2010 Sep 22.
Article in English | MEDLINE | ID: mdl-20734992

ABSTRACT

meso-Cyclic imides are monohydrogenated to form the corresponding hydroxy lactams in 88-97% ee using trans-[Ru((R)-BINAP)(H)(2)((R,R)-dpen)] and related compounds as catalysts with base in THF. The hydrogenation proceeds with high enantiogroup- and chemoselectivity, and it is a desymmetrization reaction, forming up to five stereogenic centers in one reaction. Conversion of a hydroxy lactam into the corresponding iminium ion followed by addition of indene extended the number of stereogenic centers from 5 to 7.


Subject(s)
Imides/chemistry , Catalysis , Hydrogenation , Stereoisomerism , Substrate Specificity
14.
J Am Chem Soc ; 130(36): 11979-87, 2008 Sep 10.
Article in English | MEDLINE | ID: mdl-18702465

ABSTRACT

The catalytic intermediate trans-[Ru((R)-BINAP)(H)2((R,R)-dpen)] (1) reacted on mixing with acetophenone in THF at -80 degrees C under approximately 2 atm H2 to generate the alkoxide trans-Ru((R)-BINAP)(H)((Ph)(Me)CHO)((R,R)-dpen) (6). Contrary to expectations, free Ru-amide and 1-phenylethanol were not the immediate products of this addition reaction. The addition reaction was reversible in THF. 2-Propanol prevents racemization of the alcohol product in THF solvent.

15.
Phys Chem Chem Phys ; 9(15): 1850-7, 2007 Apr 21.
Article in English | MEDLINE | ID: mdl-17415498

ABSTRACT

The relation between the performance of a self-humidifying H(2)/O(2) polymer electrolyte membrane fuel cell and the amount and distribution of water as observed using (1)H NMR microscopy was investigated. The integrated (1)H NMR image signal intensity (proportional to water content) from the region of the polymer electrolyte membrane between the catalyst layers was found to correlate well with the power output of the fuel cell. Several examples are provided which demonstrate the sensitivity of the (1)H NMR image intensity to the operating conditions of the fuel cell. Changes in the O(2)(g) flow rate cause predictable trends in both the power density and the image intensity. Higher power densities, achieved by decreasing the resistance of the external circuit, were found to increase the water in the PEM. An observed plateau of both the power density and the integrated (1)H NMR image signal intensity from the membrane electrode assembly and subsequent decline of the power density is postulated to result from the accumulation of H(2)O(l) in the gas diffusion layer and cathode flow field. The potential of using (1)H NMR microscopy to obtain the absolute water content of the polymer electrolyte membrane is discussed and several recommendations for future research are provided.


Subject(s)
Electric Power Supplies , Electrochemistry/instrumentation , Electrodes , Electrolytes/chemistry , Magnetic Resonance Spectroscopy/methods , Polymers/chemistry , Water/chemistry , Electrochemistry/methods , Equipment Design , Equipment Failure Analysis , Materials Testing/methods , Membranes, Artificial , Protons
16.
J Am Chem Soc ; 128(43): 14192-9, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-17061904

ABSTRACT

Proton ((1)H) NMR microscopy is used to investigate in-situ the distribution of water throughout a self-humidifying proton-exchange membrane fuel cell, PEMFC, operating at ambient temperature and pressure on dry H(2)(g) and O(2)(g). The results provide the first experimental images of the in-plane distribution of water within the PEM of a membrane electrode assembly in an operating fuel cell. The effect of gas flow configuration on the distribution of water in the PEM and cathode flow field is investigated, revealing that the counter-flow configurations yield a more uniform distribution of water throughout the PEM. The maximum power output from the PEMFC, while operating under conditions of constant external load, occurs when H(2)O(l) is first visible in the (1)H NMR image of the cathode flow field, and subsequently declines as this H(2)O(l) continues to accumulate. The (1)H NMR microscopy experiments are in qualitative agreement with predictions from several theoretical modeling studies (e.g., Pasaogullari, U.; Wang, C. Y. J. Electrochem. Soc. 2005, 152, A380-A390), suggesting that combined theoretical and experimental approaches will constitute a powerful tool for PEMFC design, diagnosis, and optimization.

17.
J Am Chem Soc ; 128(42): 13700-1, 2006 Oct 25.
Article in English | MEDLINE | ID: mdl-17044693

ABSTRACT

The dihydrogen compound trans-[Ru((R)-BINAP)(H)(eta2-H2)((R,R)-dpen)]+ (2', BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl, dpen = 1,2-diphenylethylenediamine) is a proposed intermediate in asymmetric ketone hydrogenations. It quickly reacts at -80 degrees C with 1 equiv of the base KOtBu in 2-PrOH-d8/CH2Cl2-d2 under H2 to generate trans-Ru((R)-BINAP)(H)(2-PrO)((R,R)-dpen) (4). The alkoxide 4 does not react with H2 after hours under ambient conditions. Addition of 1 equiv of KOtBu to 4 produces a hydrogen bonded species 10 that reacts readily with H2 at -80 degrees C to generate the dihydride catalytic intermediate trans-[Ru((R)-BINAP)(H)2((R,R)-dpen)] (3'). Addition of 1 equiv of ((CH3)3Si)2NK to the alkoxide 4 produces the amide catalytic intermediate 5. Compound 5 reacts reversibly with H2 to generate 3'.

18.
Chemphyschem ; 7(1): 67-75, 2006 Jan 16.
Article in English | MEDLINE | ID: mdl-16345115

ABSTRACT

To understand proton-exchange membrane fuel cells (PEMFCs) better, researchers have used several techniques to visualize their internal operation. This Concept outlines the advantages of using 1H NMR microscopy, that is, magnetic resonance imaging, to monitor the distribution of water in a working PEMFC. We describe what a PEMFC is, how it operates, and why monitoring water distribution in a fuel cell is important. We will focus on our experience in constructing PEMFCs, and demonstrate how 1H NMR microscopy is used to observe the water distribution throughout an operating hydrogen PEMFC. Research in this area is briefly reviewed, followed by some comments regarding challenges and anticipated future developments.

19.
J Am Chem Soc ; 127(12): 4152-3, 2005 Mar 30.
Article in English | MEDLINE | ID: mdl-15783180

ABSTRACT

The compound fac-[Ru((R)-BINAP)(H)(2-PrOH)3]+ (6) (BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl) reacts with (R,R)-dpen (dpen = 1,2-diphenylethylenediamine) under H2 at -60 degrees C in 2-PrOH-d8/CD2Cl2 to generate the cationic dihydrogen putative intermediate trans-[Ru((R)-BINAP)(H)(eta2-H2)((R,R)-dpen)]+ (2') without H-D exchange between the hydrogen ligands and the solvent. A 1H NMR study concludes that the dihydrogen ligand in 2' does not protonate 2-PrOH to a catalytically significant extent, and that 2' requires an added base or hydride source to be an active catalyst.

20.
J Am Chem Soc ; 126(37): 11436-7, 2004 Sep 22.
Article in English | MEDLINE | ID: mdl-15366879

ABSTRACT

Proton NMR imaging was used to investigate in situ the distribution of water in a polymer electrolyte membrane fuel cell operating on H2 and O2. In a single experiment, water was monitored in the gas flow channels, the membrane electrode assembly, and in the membrane surrounding the catalysts. Radial gradient diffusion removes water from the catalysts into the surrounding membrane. This research demonstrates the strength of 1H NMR microscopy as an aid for designing fuel cells to optimize water management.

SELECTION OF CITATIONS
SEARCH DETAIL
...