Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Swiss J Geosci ; 114(1): 14, 2021.
Article in English | MEDLINE | ID: mdl-34720820

ABSTRACT

Fluid assisted Alpine fissure-vein and cleft formation starts at prograde, peak or retrograde metamorphic conditions of 450-550 °C and 0.3-0.6 GPa and below, commonly at conditions of ductile to brittle rock deformation. Early-formed fissures become overprinted by subsequent deformation, locally leading to a reorientation. Deformation that follows fissure formation initiates a cycle of dissolution, dissolution/reprecipitation or new growth of fissure minerals enclosing fluid inclusions. Although fissures in upper greenschist and amphibolite facies rocks predominantly form under retrograde metamorphic conditions, this work confirms that the carbon dioxide fluid zone correlates with regions of highest grade Alpine metamorphism, suggesting carbon dioxide production by prograde devolatilization reactions and rock-buffering of the fissure-filling fluid. For this reason, fluid composition zones systematically change in metamorphosed and exhumed nappe stacks from diagenetic to amphibolite facies metamorphic rocks from saline fluids dominated by higher hydrocarbons, methane, water and carbon dioxide. Open fissures are in most cases oriented roughly perpendicular to the foliation and lineation of the host rock. The type of fluid constrains the habit of the very frequently crystallizing quartz crystals. Open fissures also form in association with more localized strike-slip faults and are oriented perpendicular to the faults. The combination of fissure orientation, fissure quartz fluid inclusion and fissure monazite-(Ce) (hereafter monazite) Th-Pb ages shows that fissure formation occurred episodically (1) during the Cretaceous (eo-Alpine) deformation cycle in association with exhumation of the Austroalpine Koralpe-Saualpe region (~ 90 Ma) and subsequent extensional movements in association with the formation of the Gosau basins (~ 90-70 Ma), (2) during rapid exhumation of high-pressure overprinted Briançonnais and Piemontais units (36-30 Ma), (3) during unroofing of the Tauern and Lepontine metamorphic domes, during emplacement and reverse faulting of the external Massifs (25-12 Ma; except Argentera) and due to local dextral strike-slip faulting in association with the opening of the Ligurian sea, and (4) during the development of a young, widespread network of ductile to brittle strike-slip faults (12-5 Ma). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s00015-021-00391-9.

2.
Swiss J Geosci ; 114(1): 9, 2021.
Article in English | MEDLINE | ID: mdl-33746693

ABSTRACT

The thermo-kinematic evolution of the eastern Aar Massif, Swiss Alps, was investigated using peak temperature data estimated from Raman spectroscopy of carbonaceous material and detailed field analyses. New and compiled temperature-time constraints along the deformed and exhumed basement-cover contact allow us to (i) establish the timing of metamorphism and deformation, (ii) track long-term horizontal and vertical orogenic movements and (iii) assess the influence of temperature and structural inheritance on the kinematic evolution. We present a new shear zone map, structural cross sections and a step-wise retrodeformation. From ca.\;26\,Ma onwards, basement-involved deformation started with the formation of relatively discrete NNW-directed thrusts. Peak metamorphic isograds are weakly deformed by these thrusts, suggesting that they initiated before or during the metamorphic peak under ongoing burial in the footwall to the basal Helvetic roof thrust. Subsequent peak- to post-metamorphic deformation was dominated by steep, mostly NNW-vergent reverse faults ( ca.  22-14 Ma). Field investigations demonstrate that these shear zones were steeper than 50 ∘ already at inception. This produced the massif-internal structural relief and was associated with large vertical displacements (7 km shortening vs. up to 11 km exhumation). From 14 Ma onwards, the eastern Aar massif exhumed "en bloc" (i.e., without significant differential massif-internal exhumation) in the hanging wall of frontal thrusts, which is consistent with the transition to strike-slip dominated deformation observed within the massif. Our results indicate 13 km shortening and 9 km exhumation between 14 Ma and present. Inherited normal faults were not significantly reactivated. Instead, new thrusts/reverse faults developed in the basement below syn-rift basins, and can be traced into overturned fold limbs in the overlying sediment, producing tight synclines and broad anticlines along the basement-cover contact. The sediments were not detached from their crystalline substratum and formed disharmonic folds. Our results highlight decreasing rheological contrasts between (i) relatively strong basement and (ii) relatively weak cover units and inherited faults at higher temperature conditions. Both the timing of basement-involved deformation and the structural style (shear zone dip) appear to be controlled by evolving temperature conditions.

3.
Sci Rep ; 9(1): 17871, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31767893

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Sci Rep ; 9(1): 9209, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31239469

ABSTRACT

Cockades are clasts completely surrounded by spheroidal hydrothermal overgrowth rims. They are observed inside hydrothermal fault breccias and can provide insights into fault dynamics. The formation of cockades with spheroidal hydrothermal overgrowth rims is related to fast fracturing and dilation, and requires primary clasts to be suspended in a fluid. The rim growth is driven by drops in fluid pressure and related oversaturation. We use descriptions of cockades, their rims and cements in a fault breccia. Geometrical data are combined with mechano-chemical calculations to gain insights into seismic processes and estimate seismic magnitudes. Fast rates for formation of cockade cores and first rim growth are interpreted to be the result of an earthquake's main shock. Younger growth rims represent subsequent aftershocks, while cemented cockades record interseismic periods. We propose that by considering growth rates of hydrothermal precipitates and cements, paleo-earthquake cycles can be unraveled and a link between geophysics and fault structures can be established.

5.
Sci Rep ; 7(1): 413, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28341833

ABSTRACT

The crustal-scale geometry of the European Alps has been explained by a classical subduction-scenario comprising thrust-and-fold-related compressional wedge tectonics and isostatic rebound. However, massive blocks of crystalline basement (External Crystalline Massifs) vertically disrupt the upper-crustal wedge. In the case of the Aar massif, top basement vertically rises for >12 km and peak metamorphic temperatures increase along an orogen-perpendicular direction from 250 °C-450 °C over horizontal distances of only <15 km (Innertkirchen-Grimselpass), suggesting exhumation of midcrustal rocks with increasing uplift component along steep vertical shear zones. Here we demonstrate that delamination of European lower crust during lithosphere mantle rollback migrates northward in time. Simultaneously, the Aar massif as giant upper crustal block extrudes by buoyancy forces, while substantial volumes of lower crust accumulate underneath. Buoyancy-driven deformation generates dense networks of steep reverse faults as major structures interconnected by secondary branches with normal fault component, dissecting the entire crust up to the surface. Owing to rollback fading, the component of vertical motion reduces and is replaced by a late stage of orogenic compression as manifest by north-directed thrusting. Buoyancy-driven vertical tectonics and modest late shortening, combined with surface erosion, result in typical topographic and metamorphic gradients, which might represent general indicators for final stages of continent-continent collisions.

6.
Nat Commun ; 6: 7504, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26105966

ABSTRACT

Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...