Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Endocrinology ; 157(2): 600-10, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26671183

ABSTRACT

In both mice and patients with Albright hereditary osteodystrophy, heterozygous inactivating mutations of Gsα, a ubiquitously expressed G protein that mediates receptor-stimulated intracellular cAMP production, lead to obesity and insulin resistance but only when the mutation is present on the maternal allele. This parent-of-origin effect in mice was shown to be due to Gsα imprinting in one or more brain regions. The ventromedial hypothalamus (VMH) is involved in the regulation of energy and glucose homeostasis, but the role of Gsα in VMH on metabolic regulation is unknown. To examine this, we created VMH-specific Gsα-deficient mice by mating Gsα-floxed mice with SF1-cre mice. Heterozygotes with Gsα mutation on either the maternal or paternal allele had a normal metabolic phenotype, and there was no molecular evidence of Gsα imprinting, indicating that the parent-of-origin metabolic effects associated with Gsα mutations is not due to Gsα deficiency in VMH SF1 neurons. Homozygous VMH Gsα knockout mice (VMHGsKO) showed no changes in body weight on either a regular or high-fat diet. However, glucose metabolism (fasting glucose, glucose tolerance, insulin sensitivity) was significantly improved in male VMHGsKO mice, with the difference more dramatic on the high-fat diet. In addition, male VMHGsKO mice on the high-fat diet showed a greater anorexigenic effect and increased VMH signal transducer and activator of transcription-3 phosphorylation in response to leptin. These results indicate that VMH Gsα/cyclic AMP signaling regulates glucose homeostasis and alters leptin sensitivity in mice, particularly in the setting of excess caloric intake.


Subject(s)
Drug Resistance/genetics , Energy Metabolism/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Glucose/metabolism , Leptin/pharmacology , Ventromedial Hypothalamic Nucleus/metabolism , Animals , Diet, High-Fat , Female , Homeostasis/genetics , Leptin/metabolism , Male , Mice , Mice, Knockout
2.
Endocrinology ; 153(9): 4256-65, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22733970

ABSTRACT

The G protein α-subunit G(s)α mediates receptor-stimulated cAMP generation. Heterozygous inactivating G(s)α mutations on the maternal allele result in obesity primarily due to reduced energy expenditure in Albright hereditary osteodystrophy patients and in mice. We previously showed that mice with central nervous system (CNS)-specific G(s)α deletion on the maternal allele (mBrGs KO) also develop severe obesity with reduced energy expenditure and that G(s)α is primarily expressed from the maternal allele in the paraventricular nucleus (PVN) of the hypothalamus, an important site of energy balance regulation. We now generated mice with PVN-specific G(s)α deficiency by mating Single-minded 1-cre and G(s)α-floxed mice. Homozygous G(s)α deletion produced early lethality. Heterozygotes with maternal G(s)α deletion (mPVNGsKO) also developed obesity and had small reductions in energy expenditure. However, this effect was much milder than that found in mBrGsKO mice and was more prominent in males. We previously showed mBrGsKO mice to have significant reductions in melanocortin receptor agonist-stimulated energy expenditure and now show that mBrGsKO mice have impaired cold-induced brown adipose tissue stimulation. In contrast, these effects were absent in mPVNGsKO mice. mPVNGsKO mice also had minimal effects on glucose metabolism as compared with mBrGsKO mice. Consistent with the presence of G(s)α imprinting, paternal heterozygotes showed no changes in energy or glucose metabolism. These results indicate that although G(s)α deficiency in PVN partially contributes to the metabolic phenotype resulting from maternal G(s)α mutations, G(s)α imprinting in other CNS regions is also important in mediating the CNS effects of G(s)α mutations on energy and glucose metabolism.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/deficiency , Hypothalamus/metabolism , Obesity/genetics , Paraventricular Hypothalamic Nucleus/metabolism , Animals , Body Composition/genetics , Body Composition/physiology , Eating/genetics , Eating/physiology , Female , GTP-Binding Protein alpha Subunits, Gs/genetics , Male , Mice , Mice, Knockout , Mutation
3.
Endocrinology ; 152(9): 3343-50, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21771891

ABSTRACT

The stimulatory G protein α-subunit (G(s)α) couples hormone and other receptors to the generation of intracellular cAMP. We previously showed that mice with liver-specific G(s)α deficiency [liver-specific G(s)α knockout (LGsKO) mice] had reduced adiposity and improved glucose tolerance associated with increased glucose-stimulated insulin secretion, pancreatic islet hyperplasia, and very high serum glucagon and glucagon-like peptide 1 (GLP-1) levels. Because GLP-1 is known to stimulate insulin secretion and to have effects on energy balance, we mated LGsKO mice with germline GLP-1 receptor (GLP-1R) knockout mice (Glp1r(-/-)) and compared LGsKO to double-knockout (LGs/Glp1r(-/-)) mice to determine the contribution of excess GLP-1R signaling to the LGsKO phenotype. Loss of the GLP-1R failed to reverse most of the metabolic features of LGsKO mice, including reduced fat mass, increased glucose tolerance, and second-phase glucose-stimulated insulin secretion, islet cell hyperplasia, and very high glucagon and GLP-1 levels. However, loss of GLP-1R impaired first-phase insulin secretion in mice with or without liver-specific G(s)α deficiency. Thus, excess GLP-1 action (or at least through GLP-1R) does not contribute to the LGsKO metabolic phenotype, and other unknown factors involved in the cross talk between the liver G(s)α/cAMP pathway and pancreatic islet function need to be further elucidated.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/metabolism , Islets of Langerhans/metabolism , Liver/metabolism , Receptors, Glucagon/metabolism , Animals , Basal Metabolism/physiology , Body Composition/physiology , Eating/physiology , GTP-Binding Protein alpha Subunits, Gs/genetics , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor , Glucose Tolerance Test , Insulin/metabolism , Mice , Mice, Transgenic , Phenotype , Receptors, Glucagon/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...