Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Clin Invest ; 133(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37909333

ABSTRACT

Autoimmune polyendocrine syndrome type 1 (APS-1) is caused by mutations in the autoimmune regulator (AIRE) gene. Most patients present with severe chronic mucocutaneous candidiasis and organ-specific autoimmunity from early childhood, but the clinical picture is highly variable. AIRE is crucial for negative selection of T cells, and scrutiny of different patient mutations has previously highlighted many of its molecular mechanisms. In patients with a milder adult-onset phenotype sharing a mutation in the canonical donor splice site of intron 7 (c.879+1G>A), both the predicted altered splicing pattern with loss of exon 7 (AireEx7-/-) and normal full-length AIRE mRNA were found, indicating leaky rather than abolished mRNA splicing. Analysis of a corresponding mouse model demonstrated that the AireEx7-/- mutant had dramatically impaired transcriptional capacity of tissue-specific antigens in medullary thymic epithelial cells but still retained some ability to induce gene expression compared with the complete loss-of-function AireC313X-/- mutant. Our data illustrate an association between AIRE activity and the severity of autoimmune disease, with implications for more common autoimmune diseases associated with AIRE variants, such as primary adrenal insufficiency, pernicious anemia, type 1 diabetes, and rheumatoid arthritis.


Subject(s)
Autoimmune Diseases , Polyendocrinopathies, Autoimmune , Adult , Animals , Child, Preschool , Humans , Mice , Mutation , Polyendocrinopathies, Autoimmune/genetics , RNA, Messenger , T-Lymphocytes , AIRE Protein
2.
Fam Cancer ; 21(4): 389-398, 2022 10.
Article in English | MEDLINE | ID: mdl-34981296

ABSTRACT

Pathogenic germline variants in Breast cancer susceptibility gene 1 (BRCA1) predispose carriers to hereditary breast and ovarian cancer (HBOC). Through genetic testing of patients with suspected HBOC an increasing number of novel BRCA1 variants are discovered. This creates a growing need to determine the clinical significance of these variants through correct classification (class 1-5) according to established guidelines. Here we present a joint collection of all BRCA1 variants of class 2-5 detected in the four diagnostic genetic laboratories in Norway. The overall objective of the study was to generate an overview of all BRCA1 variants in Norway and unveil potential discrepancies in variant interpretation between the hospitals, serving as a quality control at the national level. For a subset of variants, we also assessed the change in classification over a ten-year period with increasing information available. In total, 463 unique BRCA1 variants were detected. Of the 126 variants found in more than one hospital, 70% were interpreted identically, while 30% were not. The differences in interpretation were mainly by one class (class 2/3 or 4/5), except for one larger discrepancy (class 3/5) which could affect the clinical management of patients. After a series of digital meetings between the participating laboratories to disclose the cause of disagreement for all conflicting variants, the discrepancy rate was reduced to 10%. This illustrates that variant interpretation needs to be updated regularly, and that data sharing and improved national inter-laboratory collaboration greatly improves the variant classification and hence increases the accuracy of cancer risk assessment.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Humans , Female , Laboratories , BRCA1 Protein/genetics , Genes, BRCA1 , Breast Neoplasms/genetics , Genetic Testing , Carcinoma, Ovarian Epithelial/genetics , Ovarian Neoplasms/genetics , Germ Cells , Genetic Predisposition to Disease , BRCA2 Protein/genetics , Germ-Line Mutation
3.
J Exp Med ; 218(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34477806

ABSTRACT

The autoimmune regulator (AIRE) is essential for the establishment of central tolerance and prevention of autoimmunity. Interestingly, different AIRE mutations cause autoimmunity in either recessive or dominant-negative manners. Using engineered mouse models, we establish that some monoallelic mutants, including C311Y and C446G, cause breakdown of central tolerance. By using RNAseq, ATACseq, ChIPseq, and protein analyses, we dissect the underlying mechanisms for their dominancy. Specifically, we show that recessive mutations result in a lack of AIRE protein expression, while the dominant mutations in both PHD domains augment the expression of dysfunctional AIRE with altered capacity to bind chromatin and induce gene expression. Finally, we demonstrate that enhanced AIRE expression is partially due to increased chromatin accessibility of the AIRE proximal enhancer, which serves as a docking site for AIRE binding. Therefore, our data not only elucidate why some AIRE mutations are recessive while others dominant, but also identify an autoregulatory mechanism by which AIRE negatively modulates its own expression.


Subject(s)
Homeostasis/genetics , Mutation/genetics , Transcription Factors/genetics , Animals , Autoimmunity/genetics , Chromatin/genetics , Dissection/methods , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Models, Animal , AIRE Protein
4.
Front Immunol ; 12: 722860, 2021.
Article in English | MEDLINE | ID: mdl-34526996

ABSTRACT

Autoimmune polyendocrine syndrome type I (APS-1) is a monogenic model disorder of organ-specific autoimmunity caused by mutations in the Autoimmune regulator (AIRE) gene. AIRE facilitates the expression of organ-specific transcripts in the thymus, which is essential for efficient removal of dangerous self-reacting T cells and for inducing regulatory T cells (Tregs). Although reduced numbers and function of Tregs have been reported in APS-I patients, the impact of AIRE deficiency on gene expression in these cells is unknown. Here, we report for the first time on global transcriptional patterns of isolated Tregs from APS-1 patients compared to healthy subjects. Overall, we found few differences between the groups, although deviant expression was observed for the genes TMEM39B, SKIDA1, TLN2, GPR15, FASN, BCAR1, HLA-DQA1, HLA-DQB1, HLA-DRA, GPSM3 and AKR1C3. Of significant interest, the consistent downregulation of GPR15 may indicate failure of Treg gut homing which could be of relevance for the gastrointestinal manifestations commonly seen in APS-1. Upregulated FASN expression in APS-1 Tregs points to increased metabolic activity suggesting a putative link to faulty Treg function. Functional studies are needed to determine the significance of these findings for the immunopathogenesis of APS-1 and for Treg immunobiology in general.


Subject(s)
Fatty Acid Synthase, Type I/metabolism , Polyendocrinopathies, Autoimmune/immunology , Polyendocrinopathies, Autoimmune/metabolism , T-Lymphocytes, Regulatory/immunology , Adult , Case-Control Studies , Fatty Acid Synthase, Type I/genetics , Female , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Lipid Metabolism/immunology , Male , Middle Aged , Polyendocrinopathies, Autoimmune/genetics , T-Lymphocytes, Regulatory/metabolism
5.
Nat Commun ; 12(1): 959, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33574239

ABSTRACT

Autoimmune Addison's disease (AAD) is characterized by the autoimmune destruction of the adrenal cortex. Low prevalence and complex inheritance have long hindered successful genetic studies. We here report the first genome-wide association study on AAD, which identifies nine independent risk loci (P < 5 × 10-8). In addition to loci implicated in lymphocyte function and development shared with other autoimmune diseases such as HLA, BACH2, PTPN22 and CTLA4, we associate two protein-coding alterations in Autoimmune Regulator (AIRE) with AAD. The strongest, p.R471C (rs74203920, OR = 3.4 (2.7-4.3), P = 9.0 × 10-25) introduces an additional cysteine residue in the zinc-finger motif of the second PHD domain of the AIRE protein. This unbiased elucidation of the genetic contribution to development of AAD points to the importance of central immunological tolerance, and explains 35-41% of heritability (h2).


Subject(s)
Addison Disease/genetics , Genome-Wide Association Study , Basic-Leucine Zipper Transcription Factors/genetics , CTLA-4 Antigen/genetics , Female , Humans , Male , Models, Molecular , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Risk
SELECTION OF CITATIONS
SEARCH DETAIL
...