Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 13(12): 5288-97, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21279210

ABSTRACT

We report simulations of electrochemical generation-collection experiments in which the generator is a small disc producing a specified time-dependent flux of the analyte and the collector is a large planar electrode which collects the analyte at the mass transport-controlled rate. This geometry corresponds to many experiments in bioelectrochemistry where a relatively large sensor is used to detect the products of a cell's metabolism at low concentration. In particular, our simulations are motivated by attempts to understand our results on the detection of the superoxide radical anion burst generated by osteoclasts (bone-resorbing cells) in response to various stimuli. Superoxide is present at low levels and disproportionates in aqueous media; however, the homogeneous kinetics are included in our simulations and the results show that it is possible to estimate the magnitude of the flux of superoxide produced by the cells and to accurately determine the time-dependence of the flux in response to stimuli such as injection of parathyroid hormone, vitamin D(3) and pertussis toxin. In all these cases, the superoxide anion flux was successfully modeled as uniform across the cell surface with time-dependence of the form j(0)e(-k(d)t) + j(∞). j(∞) is the sustained flux of superoxide and the first-order rate constant k(d) and the magnitude j(0) describe the transient component of the flux. The simulations indicate that for cell-electrode gaps D approximately < √(D/k(d)), where D is the diffusion coefficient, the value of k(d) can be accurately extracted from the time-dependence of the collector current without detailed knowledge of parameters which are hard to measure during the experiment, e.g., the cell radius a and cell-electrode separation d. In the case of parathyroid hormone, the first-order rate constant describing the decay of the transient component was k(d) = 1.8 ± 0.8 × 10(-1) s(-1), but much slower decays were observed in response to pertussis toxin (k(d) = 1.5 ± 0.5 × 10(-2) s(-1)) and vitamin D(3) (k(d) = 1.1 ± 0.5 × 10(-3) s(-1)).


Subject(s)
Models, Biological , Osteoclasts/chemistry , Superoxides/chemistry , Animals , Cattle , Computer Simulation , Electrochemistry , Kinetics , Osteoclasts/metabolism , Superoxides/metabolism
2.
Analyst ; 133(11): 1573-80, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18936835

ABSTRACT

Alkyl-capped silicon nanocrystals can be dispersed in aqueous media by shaking or stirring their solutions in organic solvents (DMSO, ether, THF) with excess water. THF is the most straightforward choice with which to prepare stable aqueous dispersions, because the nanocrystals are very soluble in THF and it is also miscible with water. As little as 0.01% v/v tetrahydrofuran is sufficient. DMSO and ether were the preferred choices for subsequent staining of live cells because THF shows some acute toxicity even when very dilute. The luminescence intensity of the aqueous dispersions is linear in particle concentration and independent of pH over the range 5-9. The sols retain their photoluminescence and are stable against flocculation for at least 6 months.


Subject(s)
Quantum Dots , Silicon , Dimethyl Sulfoxide , Ether , Furans , HeLa Cells , Humans , Luminescence , Nanotechnology , Polymethyl Methacrylate , Solvents , Spectrometry, Fluorescence/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...