Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
4.
Ann N Y Acad Sci ; 1465(1): 59-75, 2020 04.
Article in English | MEDLINE | ID: mdl-31721233

ABSTRACT

The era of precision medicine has generated advances in various fields of science and medicine with the potential for a paradigm shift in healthcare delivery that will ultimately lead to an individualized approach to medicine. Such timely topics were explored in 2018 at a workshop held at the Third International Conference on One Medicine One Science (iCOMOS), in Minneapolis, Minnesota. A broad range of scientists and regulatory experts provided detailed insights into the challenges and opportunities associated with precision medicine and gene editing. There was a general consensus that advances in studying the genomic traits driving differential pharmacogenomics will undoubtedly enhance individualized treatments for a wide variety of diseases. Ethical considerations, societal implications, approaches for prioritizing safe and secure use of treatment modalities, and the advent of high-throughput computing and analysis of large, complex datasets were discussed. Large biobanks, such as the All of Us Research Program and the Veterans Affairs Million Veterans Program, can aid studies of various conditions in massive cohorts of patients. As the applications of precision medicine continue to mature, the full potential and promise of these individualized approaches will continue to yield important advances in transplant medicine, oncology, public health, agriculture, pharmacology, and bioinformatics.


Subject(s)
Computational Biology , Gene Editing/trends , Pharmacogenetics/trends , Precision Medicine/trends , Agriculture , High-Throughput Screening Assays , Humans , Population Health
5.
Trop Med Infect Dis ; 4(2)2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30974815

ABSTRACT

The global burden of infectious diseases and the increased attention to natural, accidental, and deliberate biological threats has resulted in significant investment in infectious disease research. Translating the results of these studies to inform prevention, detection, and response efforts often can be challenging, especially if prior relationships and communications have not been established with decision-makers. Whatever scientific information is shared with decision-makers before, during, and after public health emergencies is highly dependent on the individuals or organizations who are communicating with policy-makers. This article briefly describes the landscape of stakeholders involved in information-sharing before and during emergencies. We identify critical gaps in translation of scientific expertise and results, and biosafety and biosecurity measures to public health policy and practice with a focus on One Health and zoonotic diseases. Finally, we conclude by exploring ways of improving communication and funding, both of which help to address the identified gaps. By leveraging existing scientific information (from both the natural and social sciences) in the public health decision-making process, large-scale outbreaks may be averted even in low-income countries.

6.
Health Secur ; 17(2): 83-99, 2019.
Article in English | MEDLINE | ID: mdl-30942632

ABSTRACT

Understanding the overall biosecurity and biodefense policy landscape, the relationships between policies and their effects on each other, and the mechanisms for leveraging advances in science and technology to enhance defensive capabilities is crucial for ensuring that policy strategies address long-standing gaps and challenges. To date, policy analyses have been conducted primarily on single issues, which limits analyses of broader effects of policies, particularly after implementation. Here we describe the first-ever systems-based analysis of the US biosecurity and biodefense policy landscape to analyze functional relationships between policies, including examination of the unintended positive or negative consequences of policy actions. This analysis revealed a striking bifurcation of the US policy landscape for countering biological threats, with one grouping of policies focused on prevention of theft, diversion, or deliberate malicious use of biological sciences knowledge, skills, materials, and technologies (ie, biosecurity) and a second grouping on development of capabilities and knowledge to assess, detect, monitor, respond to, and attribute biological threats (ie, biodefense). An analysis of indirect effects demonstrated that policies within groups may result in mutual benefit, but policies in different groups may counteract each other, limiting achievement of the policy objectives in either group. The current policy landscape predominantly focuses on pathogens and toxins, having limited focus on rapidly changing biotechnologies with potential to positively contribute to biodefense capabilities or introduce unknown and/or unacceptable security risk. Based on our analyses, we present actions for implementing biosecurity and biodefense policy in the United States that intends to harness the benefits of science and technology while also minimizing potential risks. This article synthesizes and highlights the major findings and conclusions from the detailed analyses, which can be found in the full report ( http://www.gryphonscientific.com/biosecurity-policy/ ).


Subject(s)
Bioterrorism/prevention & control , Policy Making , Security Measures/legislation & jurisprudence , Biotechnology/legislation & jurisprudence , Bioterrorism/legislation & jurisprudence , Humans , Systems Analysis , United States
7.
Article in English | MEDLINE | ID: mdl-30859099

ABSTRACT

Biology and biotechnology have changed dramatically during the past 20 years, in part because of increases in computational capabilities and use of engineering principles to study biology. The advances in supercomputing, data storage capacity, and cloud platforms enable scientists throughout the world to generate, analyze, share, and store vast amounts of data, some of which are biological and much of which may be used to understand the human condition, agricultural systems, evolution, and environmental ecosystems. These advances and applications have enabled: (1) the emergence of data science, which involves the development of new algorithms to analyze and visualize data; and (2) the use of engineering approaches to manipulate or create new biological organisms that have specific functions, such as production of industrial chemical precursors and development of environmental bio-based sensors. Several biological sciences fields harness the capabilities of computer, data, and engineering sciences, including synthetic biology, precision medicine, precision agriculture, and systems biology. These advances and applications are not limited to one country. This capability has economic and physical consequences, but is vulnerable to unauthorized intervention. Healthcare and genomic information of patients, information about pharmaceutical and biotechnology products in development, and results of scientific research have been stolen by state and non-state actors through infiltration of databases and computer systems containing this information. Countries have developed their own policies for governing data generation, access, and sharing with foreign entities, resulting in asymmetry of data sharing. This paper describes security implications of asymmetric access to and use of biological data.

8.
Health Secur ; 15(6): 629-637, 2017.
Article in English | MEDLINE | ID: mdl-29091742

ABSTRACT

This article examines the biosecurity and biodefense implications resulting from the recent creation of horsepox virus, a noncirculating (extinct) species of orthopoxvirus. Here we examine the technical aspects of the horsepox virus synthesis and conclude that orthopox synthesis experiments currently remain technically challenging-and will continue to be so, even once this work is published in the scientific literature. This limits potential misuse by some types of nefarious actors. We also examine the implications of one stated purpose for the recreation of horsepox virus: the development of a smallpox vaccine. If the development is successful, it could take advantage of US government incentives for the priority FDA review of medical countermeasures (MCMs) against biosecurity threats. However, if this case leads to the determination that this incentive is counterproductive for security, the newly created priority review voucher program should be more clearly defined or limited based on need. Limiting the program could have costs that require further consideration, however, as general incentives for biodefense medical countermeasure development are required for MCMs to be available. Finally, while the recreation of horsepox virus was not technically trivial, nor was it cell-free, this experiment was a de facto demonstration of already-assumed scientific capabilities. The ability to recreate horsepox, or smallpox, will remain no matter what policy controls are put into place. It will be impossible to close off all avenues for nefarious misuse of gene synthesis, or misuse of biological materials more broadly. As a result, we advocate for the implementation of policy, regulations, and guidance that will make illicit recreation harder, more burdensome, more detectable, and, thus, more preventable without having sweeping negative consequences for the research enterprise. As part of our biosecurity efforts, we must also encourage and enable scientists to participate actively and to do all they can to safeguard their technical fields from irresponsible or illicit actions.


Subject(s)
Orthopoxvirus/genetics , Biohazard Release/prevention & control , Communicable Diseases, Emerging/prevention & control , Humans , Smallpox/immunology , Smallpox/prevention & control , Smallpox Vaccine/genetics , Vaccinia/genetics
10.
Glob Adv Health Med ; 4(5): 50-4, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26421234

ABSTRACT

Numerous interspecies disease transmission events, Ebola virus being a recent and cogent example, highlight the complex interactions between human, animal, and environmental health and the importance of addressing medicine and health in a comprehensive scientific manner. The diversity of information gained from the natural, social, behavioral, and systems sciences is critical to developing and sustainably promoting integrated health approaches that can be implemented at the local, national, and international levels to meet grand challenges. The Concept of One Medicine One Science (COMOS) as outlined herein describes the interplay between scientific knowledge that underpins health and medicine and efforts toward stabilizing local systems using 2 linked case studies: the food system and emerging infectious disease. Forums such as the International Conference of One Medicine One Science (iCOMOS), where science and policy can be debated together, missing pieces identified, and science-based collaborations formed among industry, governmental, and nongovernmental policy makers and funders, is an essential step in addressing global health. The expertise of multiple disciplines and research foci to support policy development is critical to the implementation of one health and the successful achievement of global health security goals.


Los numerosos acontecimientos de transmisión de enfermedades entre especies, de los cuales el virus del Ébola es un ejemplo claro y reciente, ponen de manifiesto las complejas interacciones que existen entre la salud humana, animal y medioambiental, así como la importancia de abordar la medicina y la salud de una manera científica e integral. La diversidad de la información obtenida de las ciencias naturales, sociales, conductuales y de los sistemas es fundamental para el desarrollo y fomento sostenibles de enfoques integrados de salud que puedan implementarse a nivel local, nacional e internacional para atender los grandes retos. El concepto de Una medicina una ciencia (Concept of One Medicine One Science, COMOS) esbozado aquí describe la interrelación entre el conocimiento científico que sustenta la salud y la medicina, y los esfuerzos hacia la estabilización de los sistemas locales por medio de dos estudios de casos relacionados: el sistema alimentario y las enfermedades infecciosas emergentes. Los foros como la Conferencia internacional de una medicina una ciencia (International Conference of One Medicine One Science, iCOMOS), donde se hace posible el debate conjunto de la ciencia y la política, la identificación de eslabones perdidos, y la formación de colaboraciones basadas en la ciencia entre los formuladores y fundadores de políticas industriales, gubernamentales y no gubernamentales, representan un paso decisivo para abordar el tema de la salud mundial. La experiencia de múltiples disciplinas y enfoques de investigación para apoyar el desarrollo de políticas es fundamental para la implementación de una salud y el logro de los objetivos relativos a la seguridad de la salud mundial.

SELECTION OF CITATIONS
SEARCH DETAIL
...