Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122024 Apr 05.
Article in English | MEDLINE | ID: mdl-38577979

ABSTRACT

Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.


Subject(s)
RNA Precursors , Transcription, Genetic , Animals , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA , Introns/genetics , Mammals/genetics
2.
Mol Cell Biol ; 35(5): 884-98, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25535332

ABSTRACT

Nuclear lamins play important roles in the organization and structure of the nucleus; however, the specific mechanisms linking lamin structure to nuclear functions are poorly defined. We demonstrate that reducing nuclear lamin B1 expression by short hairpin RNA-mediated silencing in cancer cell lines to approximately 50% of normal levels causes a delay in the cell cycle and accumulation of cells in early S phase. The S phase delay appears to be due to the stalling and collapse of replication forks. The double-strand DNA breaks resulting from replication fork collapse were inefficiently repaired, causing persistent DNA damage signaling and the assembly of extensive repair foci on chromatin. The expression of multiple factors involved in DNA replication and repair by both nonhomologous end joining and homologous repair is misregulated when lamin B1 levels are reduced. We further demonstrate that lamin B1 interacts directly with the promoters of some genes associated with DNA damage response and repair, including BRCA1 and RAD51. Taken together, the results suggest that the maintenance of lamin B1 levels is required for DNA replication and repair through regulation of the expression of key factors involved in these essential nuclear functions.


Subject(s)
Chromatin/chemistry , Gene Expression Regulation, Neoplastic , Gene Expression Regulation , Lamin Type B/metabolism , Apoptosis , BRCA1 Protein/metabolism , Cell Cycle , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA Damage , DNA Repair , DNA Replication , Gene Silencing , Humans , RNA Interference , Rad51 Recombinase/metabolism , S Phase
SELECTION OF CITATIONS
SEARCH DETAIL
...