Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 631: 122528, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36563799

ABSTRACT

Dental caries is one of the most widespread chronic infectious diseases in the world. It is mainly caused by the production of acid in the biofilm from the bacterial metabolism of carbohydrates. Nowadays, the prevention of caries is mainly based on the use of topical formulations containing fluoride. However, effective fluoride supplementation may not be sufficient in high-risk individuals, leading to the exploration of alternative strategies such as the neutralization of acid in the oral cavity. Urea is hydrolyzed into ammonia by oral bacteria, leading to a local alkalization that may counteract tooth decay. Herein, we report the fabrication of 3D printed personalized dental trays with a local and prolonged release of urea. Composite filaments with tunable urea release kinetics were produced by hot melt extrusion of poly(ε-caprolactone) and poly(vinyl alcohol) or poly(ethylene glycol) blends mixed with urea. The filaments were further used to 3D print by fused deposition modeling objects capable of releasing urea in a sustained and spatially controlled manner. In vitro studies performed in the presence of Streptococcus salivarius demonstrated the ability of urea released from a 3D printed model toothguards to reduce the pH drop induced by carbohydrates. This study showed the potential of urea-loaded devices to reduce cariogenic acidification of the environment surrounding the enamel by delivering urea directly to the tooth surface.


Subject(s)
Dental Caries , Urea , Humans , Drug Liberation , Fluorides , Dental Caries/prevention & control , Printing, Three-Dimensional , Carbohydrates , Technology, Pharmaceutical , Tablets
2.
Adv Sci (Weinh) ; 9(27): e2200907, 2022 09.
Article in English | MEDLINE | ID: mdl-35896948

ABSTRACT

Digital light processing (DLP) 3D printing is a promising technique for the rapid manufacturing of customized medical devices with high precision. To be successfully translated to a clinical setting, challenges in the development of suitable photopolymerizable materials have yet to be overcome. Besides biocompatibility, it is often desirable for the printed devices to be biodegradable, elastic, and with a therapeutic function. Here, a multifunctional DLP printed material system based on the composite of gold nanorods and polyester copolymer is reported. The material demonstrates robust near-infrared (NIR) responsiveness, allowing rapid and stable photothermal effect leading to the time-dependent cell death. NIR light-triggerable shape transformation is demonstrated, resulting in a facilitated insertion and expansion of DLP printed stent ex vivo. The proposed strategy opens a promising avenue for the design of multifunctional therapeutic devices based on nanoparticle-polymer composites.


Subject(s)
Absorbable Implants , Gold , Polyesters , Polymers , Printing, Three-Dimensional
3.
J Control Release ; 348: 870-880, 2022 08.
Article in English | MEDLINE | ID: mdl-35752251

ABSTRACT

Dental decay is a highly prevalent chronic disease affecting people from all ages. Clinically, fluoride supplementation is the primary strategy in the prevention of dental decay. However, the current existing self-application formulations such as gels or mouthwashes are rapidly cleared after administration, resulting in modest efficacy even after repeated applications. Therefore, a user-friendly formulation that can provide sustained fluoride release in the oral cavity is of great interest for dental decay prevention. Herein, we report the utilization of fused deposition modelling to fabricate personalised mouthguards, which allow local and prolonged fluoride elution. Composite filaments comprising sodium fluoride and polymers with tuneable hydrophobicity were produced using blends of poly(ε-caprolactone) (PCL) and poly(vinyl alcohol) or poly(ethylene glycol) (PEG). The materials exhibited suitable mechanical properties for dental devices as well as different release kinetics depending on their composition. Ex vivo studies were performed on decayed human teeth using the 3D printed tooth caps that precisely fit the complex geometries of each specimen. A significant elevation of fluoride content in the lesion mineral in contact with the PCL/PEG tooth caps was achieved compared to the ones in contact with solutions mimicking dental care products. In conclusion, this study suggested that a sustained localized drug release of fluoride from personalised 3D printed mouthguards at the device-enamel interface can improve the incorporation of fluoride in the tooth matrix and prevent lesion progression.


Subject(s)
Dental Caries , Fluorides , Dental Caries/drug therapy , Dental Caries/prevention & control , Drug Liberation , Humans , Polymers , Printing, Three-Dimensional
4.
Plant Physiol Biochem ; 60: 74-80, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22906813

ABSTRACT

Plasmopara viticola must successfully infect susceptible grapevine cultivars to complete its biological cycle. In resistant grapevine varieties, P. viticola is blocked by the activation of defense mechanisms; these defense mechanisms produce hypersensitive reactions, which are related to programmed cell death. In animals, programmed cell death is dependent on caspase activities. In plants, different caspase-like proteases assume the same functions. To examine the roles of caspase-like proteases in P. viticola-grapevine interactions, three varieties of grapevine with different levels of P. viticola resistance were chosen. These grapevine varieties were treated with either PMSF, a serine protease inhibitor, or E-64, a cysteine protease inhibitor. The development of the pathogen was followed microscopically, and the plant defense reactions were estimated through stilbene quantification. Both protease inhibitor treatments increased the infection rate in the resistant and immune varieties, diminished the production of toxic stilbenes and changed the level of the plants' susceptibility to the pathogen. In particular, after either protease treatment, the cultivar that was originally immune became resistant (hyphae and haustoria were observed), the resistant cultivar reached the level of a susceptible cultivar (sporulation was observed) and the susceptible cultivar became more sensitive (P. viticola colonized the entirety of the leaf mesophyll).


Subject(s)
Disease Resistance/drug effects , Oomycetes/physiology , Plant Diseases/immunology , Protease Inhibitors/pharmacology , Stilbenes/metabolism , Vitaceae/drug effects , Animals , Apoptosis , Cysteine Proteinase Inhibitors/pharmacology , Gene Expression Regulation, Plant/drug effects , Host-Parasite Interactions , Leucine/analogs & derivatives , Leucine/pharmacology , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Phenylmethylsulfonyl Fluoride/pharmacology , Plant Diseases/parasitology , Plant Leaves/drug effects , Plant Leaves/immunology , Plant Leaves/parasitology , Plant Leaves/ultrastructure , Plant Stomata/drug effects , Plant Stomata/immunology , Plant Stomata/parasitology , Plant Stomata/ultrastructure , Serine Proteinase Inhibitors/pharmacology , Stilbenes/analysis , Vitaceae/immunology , Vitaceae/parasitology , Vitaceae/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...