Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci Health B ; 48(7): 530-8, 2013.
Article in English | MEDLINE | ID: mdl-23581685

ABSTRACT

In the last decade, the U.S. Food and Drug Administration (FDA) has issued several warnings and recalls for food products that exceed FDA standards for lead. Products containing chili peppers and salt were often suspected as sources of lead contamination, and included items such as candy that are routinely investigated. However, products such as hot sauces that contain similar ingredients have not been the focus of evaluations. This study quantified lead concentrations in imported hot sauces, evaluated product compliance to existing United States standards, and calculated potential dietary lead exposure for children using the Integrated Exposure Uptake Biokinetic Model. Finally, recommendations for reducing the risk of lead exposure from hot sauces are provided. Twenty-five (25) bottles of imported hot sauces manufactured in Mexico and South America were purchased in Clark County, Nevada. All hot sauces were analyzed for lead concentrations, pH, and leaded packaging. Hot sauces were analyzed by inductively coupled plasma mass spectrometry and packaging was analyzed using x-ray fluorescence technology. Four brands of hot sauces (16%) exceeded 0.1 ppm lead, the current FDA action level for lead in candy. Hot sauces with lead concentrations >0.1 ppm lead contained salt and were manufactured in Mexico. Subsequent analysis of additional lots of hot sauces exceeding 0.1 ppm lead revealed inconsistent lead concentrations between and within manufacturer lots. The lead concentrations of the plastic hot sauce lids ranged from below the limit of detection to 2,028 ppm lead. There was no association between lead concentrations in hot sauces and pepper type. These results indicate the need for more rigorous screening protocols for products imported from Mexico, the establishment of an applicable standard for hot sauce, and resources to allow for the enforcement of existing food safety policies. The data reported herein represent the first known investigation of lead concentrations in hot sauces.


Subject(s)
Capsicum/chemistry , Food Contamination/analysis , Lead/analysis , Capsicum/economics , Consumer Product Safety , Food Contamination/economics , Mexico , Nevada , South America
2.
Reprod Toxicol ; 27(3-4): 307-318, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19071210

ABSTRACT

Studies show that perfluorinated compounds cause various toxicological effects; nevertheless, effects on immune function and developmental endpoints have not been addressed at length. This study examined the effects of perfluorooctane sulfonate (PFOS) in white leghorn hatchlings on various developmental, immunological, and clinical health parameters. In addition, serum PFOS concentrations were determined by LC/MS/MS. Embryonic day (ED) 0 eggs were injected with either safflower oil/10% DMSO (control, 0mg/kg egg wt) or PFOS in safflower oil/10% DMSO at 1, 2.5, or 5mg/kg egg wt, and the chicks were grown to post-hatch day (PHD) 14. Treatment with PFOS did not affect hatch rate. Following in ovo exposure chicks exhibited increases in spleen mass at all treatment levels, in liver mass at 2.5 and 5mg/kg egg wt, and in body length (crown-rump length) at the 5mg/kg treatment. Right wings were shorter in all treatments compared to control. Increases in the frequency of brain asymmetry were evident in all treatment groups. SRBC-specific immunoglobulin (IgM and IgY combined) titers were decreased significantly at all treatment levels, while plasma lysozyme activity was increased at all treatment levels. The PHA skin test response decreased in relation to increasing PFOS dose. Serum concentrations where significant immunological, morphological, and neurological effects were observed at the lowest dose (1mg/kg egg wt) averaged 154 ng PFOS/g serum. These concentrations fall within environmental ranges reported in blood samples from wild caught avian species; thereby, verifying that the environmental egg concentrations used for the injections do indeed relate to serum levels in hatchlings that are also environmentally relevant. These data indicate that immune alterations and brain asymmetry can occur in birds following in ovo exposure to environmentally relevant concentrations of PFOS and demonstrates the need for further research on the developmental effects of perfluorinated compounds in various species.


Subject(s)
Abnormalities, Drug-Induced , Alkanesulfonic Acids/toxicity , Embryo, Nonmammalian/drug effects , Environmental Pollutants/toxicity , Fluorocarbons/toxicity , Ovum/drug effects , Alkanesulfonic Acids/pharmacology , Animals , Chick Embryo , Chickens , Crown-Rump Length , Dose-Response Relationship, Drug , Embryo, Nonmammalian/embryology , Embryonic Development/drug effects , Environmental Pollutants/pharmacology , Female , Fluorocarbons/pharmacology , Liver/drug effects , Organ Size/drug effects , Spleen/drug effects , Wings, Animal/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...