Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Host Microbe ; 32(3): 382-395.e10, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38309259

ABSTRACT

Methionine is an essential proteinogenic amino acid, but its excess can lead to deleterious effects. Inborn errors of methionine metabolism resulting from loss of function in cystathionine ß-synthase (CBS) cause classic homocystinuria (HCU), which is managed by a methionine-restricted diet. Synthetic biotics are gastrointestinal tract-targeted live biotherapeutics that can be engineered to replicate the benefits of dietary restriction. In this study, we assess whether SYNB1353, an E. coli Nissle 1917 derivative, impacts circulating methionine and homocysteine levels in animals and healthy volunteers. In both mice and nonhuman primates (NHPs), SYNB1353 blunts the appearance of plasma methionine and plasma homocysteine in response to an oral methionine load. A phase 1 clinical study conducted in healthy volunteers subjected to an oral methionine challenge demonstrates that SYNB1353 is well tolerated and blunts plasma methionine by 26%. Overall, SYNB1353 represents a promising approach for methionine reduction with potential utility for the treatment of HCU.


Subject(s)
Homocystinuria , Methionine , Humans , Mice , Animals , Methionine/metabolism , Methionine/therapeutic use , Healthy Volunteers , Escherichia coli/genetics , Escherichia coli/metabolism , Disease Models, Animal , Homocystinuria/drug therapy , Homocystinuria/metabolism , Racemethionine , Homocysteine/therapeutic use
2.
Mol Syst Biol ; 18(3): e10539, 2022 03.
Article in English | MEDLINE | ID: mdl-35253995

ABSTRACT

Enteric hyperoxaluria (EH) is a metabolic disease caused by excessive absorption of dietary oxalate leading to the formation of chronic kidney stones and kidney failure. There are no approved pharmaceutical treatments for EH. SYNB8802 is an engineered bacterial therapeutic designed to consume oxalate in the gut and lower urinary oxalate as a potential treatment for EH. Oral administration of SYNB8802 leads to significantly decreased urinary oxalate excretion in healthy mice and non-human primates, demonstrating the strain's ability to consume oxalate in vivo. A mathematical modeling framework was constructed that combines in vitro and in vivo preclinical data to predict the effects of SYNB8802 administration on urinary oxalate excretion in humans. Simulations of SYNB8802 administration predict a clinically meaningful lowering of urinary oxalate excretion in healthy volunteers and EH patients. Together, these findings suggest that SYNB8802 is a promising treatment for EH.


Subject(s)
Hyperoxaluria , Animals , Computer Simulation , Female , Humans , Hyperoxaluria/etiology , Hyperoxaluria/urine , Male , Mice , Oxalates/metabolism , Oxalates/urine
3.
Nat Biotechnol ; 36(9): 857-864, 2018 10.
Article in English | MEDLINE | ID: mdl-30102294

ABSTRACT

Phenylketonuria (PKU) is a genetic disease that is characterized by an inability to metabolize phenylalanine (Phe), which can result in neurotoxicity. To provide a potential alternative to a protein-restricted diet, we engineered Escherichia coli Nissle to express genes encoding Phe-metabolizing enzymes in response to anoxic conditions in the mammalian gut. Administration of our synthetic strain, SYNB1618, to the Pahenu2/enu2 PKU mouse model reduced blood Phe concentration by 38% compared with the control, independent of dietary protein intake. In healthy Cynomolgus monkeys, we found that SYNB1618 inhibited increases in serum Phe after an oral Phe dietary challenge. In mice and primates, Phe was converted to trans-cinnamate by SYNB1618, quantitatively metabolized by the host to hippurate and excreted in the urine, acting as a predictive biomarker for strain activity. SYNB1618 was detectable in murine or primate feces after a single oral dose, permitting the evaluation of pharmacodynamic properties. Our results define a strategy for translation of live bacterial therapeutics to treat metabolic disorders.


Subject(s)
Genetic Therapy , Phenylketonurias/therapy , Biomarkers/metabolism , Escherichia coli/genetics , Humans , Phenylketonurias/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...