Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 95(6): 1350-1364.e12, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28867551

ABSTRACT

Neural information processing depends on precisely timed, Ca2+-activated synaptic vesicle exocytosis from release sites within active zones (AZs), but molecular details are unknown. Here, we identify that the (M)Unc13-family member Unc13A generates release sites and show the physiological relevance of their restrictive AZ targeting. Super-resolution and intravital imaging of Drosophila neuromuscular junctions revealed that (unlike the other release factors Unc18 and Syntaxin-1A) Unc13A was stably and precisely positioned at AZs. Local Unc13A levels predicted single AZ activity. Different Unc13A portions selectively affected release site number, position, and functionality. An N-terminal fragment stably localized to AZs, displaced endogenous Unc13A, and reduced the number of release sites, while a C-terminal fragment generated excessive sites at atypical locations, resulting in reduced and delayed evoked transmission that displayed excessive facilitation. Thus, release site generation by the Unc13A C terminus and their specific AZ localization via the N terminus ensure efficient transmission and prevent ectopic, temporally imprecise release.


Subject(s)
Carrier Proteins/metabolism , Drosophila , Exocytosis/physiology , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , Animals , Neuromuscular Junction/metabolism , Neuromuscular Junction/ultrastructure
2.
Nat Neurosci ; 19(10): 1311-20, 2016 10.
Article in English | MEDLINE | ID: mdl-27526206

ABSTRACT

Brain function relies on fast and precisely timed synaptic vesicle (SV) release at active zones (AZs). Efficacy of SV release depends on distance from SV to Ca(2+) channel, but molecular mechanisms controlling this are unknown. Here we found that distances can be defined by targeting two unc-13 (Unc13) isoforms to presynaptic AZ subdomains. Super-resolution and intravital imaging of developing Drosophila melanogaster glutamatergic synapses revealed that the Unc13B isoform was recruited to nascent AZs by the scaffolding proteins Syd-1 and Liprin-α, and Unc13A was positioned by Bruchpilot and Rim-binding protein complexes at maturing AZs. Unc13B localized 120 nm away from Ca(2+) channels, whereas Unc13A localized only 70 nm away and was responsible for docking SVs at this distance. Unc13A(null) mutants suffered from inefficient, delayed and EGTA-supersensitive release. Mathematical modeling suggested that synapses normally operate via two independent release pathways differentially positioned by either isoform. We identified isoform-specific Unc13-AZ scaffold interactions regulating SV-Ca(2+)-channel topology whose developmental tightening optimizes synaptic transmission.


Subject(s)
Calcium Channels/metabolism , Carrier Proteins/metabolism , Drosophila melanogaster/metabolism , Presynaptic Terminals/metabolism , Synaptic Vesicles/metabolism , Animals , Carrier Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Female , GTPase-Activating Proteins/metabolism , Intracellular Signaling Peptides and Proteins , Male , Models, Neurological , Mutation , Phosphoproteins/metabolism , Protein Isoforms , rab3 GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...