Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1774(9): 1184-91, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17707701

ABSTRACT

11beta-hydroxysteroid dehydrogenase 1 regulates the tissue availability of cortisol by interconverting cortisone and cortisol. It is capable of functioning as both a reductase and a dehydrogenase depending upon the surrounding milieu. In this work, we have studied the reaction mechanism of a soluble form of human 11beta-hydroxysteroid dehydrogenase 1 and its mode of inhibition by potent and selective inhibitors belonging to three different structural classes. We found that catalysis follows an ordered addition with NADP(H) binding preceding the binding of the steroid. While all three inhibitors tested bound to the steroid binding pocket, they differed in their interactions with the cofactor NADP(H). Compound A, a pyridyl amide bound more efficiently to the NADPH-bound form of 11beta-hydroxysteroid dehydrogenase 1. Compound B, an adamantyl triazole, was unaffected by NADP(H) binding and the sulfonamide, Compound C, showed preferential binding to the NADP+ -bound form of 11beta-hydroxysteroid dehydrogenase 1. These differences were found to augment significant selectivity towards inhibition of the reductase reaction versus the dehydrogenase reaction. This selectivity may translate to differences in the in vivo effects of 11beta-hydroxysteroid dehydrogenase 1 inhibitors.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 11-beta-Hydroxysteroid Dehydrogenases/metabolism , Pyridines/pharmacology , Sulfonamides/pharmacology , Triazoles/pharmacology , Humans , Kinetics , NADP/metabolism
2.
Anal Biochem ; 349(1): 112-7, 2006 Feb 01.
Article in English | MEDLINE | ID: mdl-16325755

ABSTRACT

Methyltransferases form a large class of enzymes, most of which use S-adenosylmethionine as the methyl donor. In fact, S-adenosylmethionine is second only to ATP in the variety of reactions for which it serves as a cofactor. Several methods to measure methyltransferase activity have been described, most of which are applicable only to specific enzymes and/or substrates. In this work we describe a sensitive liquid chromatography/mass spectroscopy-based methyltransferase assay. The assay monitors the conversion of S-adenosylmethionine to S-adenosylhomocysteine and can be applied to any methyltransferase and substrate of interest. We used the well-characterized enzyme catechol O-methyltransferase to demonstrate that the assay can monitor activity with a variety of substrates, can identify new substrates, and can be used even with crude preparation of enzyme. Furthermore, we demonstrate the utility of the assay for kinetic characterization of enzymatic activity.


Subject(s)
Catechol O-Methyltransferase/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Amino Acid Sequence , Catechol O-Methyltransferase/chemistry , Catechol O-Methyltransferase/physiology , Enzyme Activation , Humans , Kinetics , Molecular Sequence Data , S-Adenosylhomocysteine/chemistry , S-Adenosylhomocysteine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...