Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 8(30): 16716-16725, 2018 May 03.
Article in English | MEDLINE | ID: mdl-35540521

ABSTRACT

In this work, three types of polymers based on ε-caprolactone have been synthesized: poly(ε-caprolactone), polystyrene-poly(ε-caprolactone), and polystyrene-poly(ε-caprolactone-r-trimethylene carbonate) (SCT), where the polystyrene block was introduced to improve the electrochemical and mechanical performance of the material. Solid polymer electrolytes (SPEs) were produced by blending the polymers with 10-40 wt% lithium bis(trifluoromethane)sulfonimide (LiTFSI). Battery devices were thereafter constructed to evaluate the cycling performance. The best performing battery half-cell utilized an SPE consisting of SCT and 17 wt% LiTFSI as both binder and electrolyte; a Li|SPE|LiFePO4 cell that cycled at 40 °C gave a discharge capacity of about 140 mA h g-1 at C/5 for 100 cycles, which was superior to the other investigated electrolytes. Dynamic mechanical analysis (DMA) showed that the storage modulus E' was about 5 MPa for this electrolyte.

2.
ChemSusChem ; 10(13): 2758-2766, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28544635

ABSTRACT

We report here a water-based functional binder framework for the lithium-sulfur battery systems, based on the general combination of a polyether and an amide-containing polymer. These binders are applied to positive electrodes optimised towards high-energy electrochemical performance based only on commercially available materials. Electrodes with up to 4 mAh cm-2 capacity and 97-98 % coulombic efficiency are achievable in electrodes with a 65 % total sulfur content and a poly(ethylene oxide):poly(vinylpyrrolidone) (PEO:PVP) binder system. Exchange of either binder component for a different polymer with similar functionality preserves the high capacity and coulombic efficiency. The improvement in coulombic efficiency from the inclusion of the coordinating amide group was also observed in electrodes where pyrrolidone moieties were covalently grafted to the carbon black, indicating the role of this functionality in facilitating polysulfide adsorption to the electrode surface. The mechanical properties of the electrodes appear not to significantly influence sulfur utilisation or coulombic efficiency in the short term but rather determine retention of these properties over extended cycling. These results demonstrate the robustness of this very straightforward approach, as well as the considerable scope for designing binder materials with targeted properties.


Subject(s)
Electric Power Supplies , Lithium/chemistry , Sulfur/chemistry , Water/chemistry , Electrochemistry , Electrodes , Nanofibers/chemistry , Polyethylene Glycols/chemistry , Povidone/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...