Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(3)2023 03 15.
Article in English | MEDLINE | ID: mdl-36980989

ABSTRACT

Autosomal recessive congenital ichthyosis (ARCI) is a non-syndromic congenital disorder of cornification characterized by abnormal scaling of the skin. The three major phenotypes are lamellar ichthyosis, congenital ichthyosiform erythroderma, and harlequin ichthyosis. ARCI is caused by biallelic mutations in ABCA12, ALOX12B, ALOXE3, CERS3, CYP4F22, NIPAL4, PNPLA1, SDR9C7, SULT2B1, and TGM1. The most severe form of ARCI, harlequin ichthyosis, is caused by mutations in ABCA12. Mutations in this gene can also lead to congenital ichthyosiform erythroderma or lamellar ichthyosis. We present a large cohort of 64 patients affected with ARCI carrying biallelic mutations in ABCA12. Our study comprises 34 novel mutations in ABCA12, expanding the mutational spectrum of ABCA12-associated ARCI up to 217 mutations. Within these we found the possible mutational hotspots c.4541G>A, p.(Arg1514His) and c.4139A>G, p.(Asn1380Ser). A correlation of the phenotype with the effect of the genetic mutation on protein function is demonstrated. Loss-of-function mutations on both alleles generally result in harlequin ichthyosis, whereas biallelic missense mutations mainly lead to CIE or LI.


Subject(s)
Ichthyosiform Erythroderma, Congenital , Ichthyosis, Lamellar , Humans , Ichthyosis, Lamellar/genetics , Genes, Recessive , Mutation , Ichthyosiform Erythroderma, Congenital/genetics , Genetic Association Studies , ATP-Binding Cassette Transporters/genetics , Acyltransferases/genetics , Phospholipases/genetics
4.
Nutr Metab (Lond) ; 6: 44, 2009 Oct 23.
Article in English | MEDLINE | ID: mdl-19852821

ABSTRACT

BACKGROUND: Vitamin A may have some influence on the immune system, but the role in allergy modulation is still unclear. OBJECTIVE: To clarify whether high levels of retinoic acid (RA) affects allergic response in vivo, we used a murine experimental model of airway allergic disease. METHODS: Ovalbumin (OVA)-immunization/OVA-challenge (OVA/OVA) and house dust mite (HDM)-immunization/HDM-challenge (HDM/HDM) experimental murine models of allergic airway disease, using C57Bl.10/Q groups of mice (n = 10) treated subcutaneously with different concentrations of all-trans RA (0, 50, 500 and 2,500 ug) every 2-days were used to assess the allergic immune response. RESULTS: Levels of total and specific-IgE in sera were increased in all groups of RA treated OVA/OVA and HDM/HDM mice. Percentage and total amount of recruited eosinophil in airways by bronchoalveolar lavage fluid (BALF) were significantly enhanced in groups treated with 50, 500 and 2,500 ug of RA compared to non-treated mice. However, the group of mice treated with 2,500 ug had less eosinophil recruitment than the other two groups (50 and 500 ug). In parallel, levels of IL-5 and total IgE in BALF were also significantly diminished in the group treated with 2,500 ug compared to the other 2 groups (50 and 500 ug). Finally, total lung resistance was decreased in group treated with 2,500 ug compared to non-treated mice. CONCLUSION: Our results suggest that retinoic acid directly enhances allergic response in vivo, but in higher doses may produce of immune suppression.

5.
J Exp Med ; 198(7): 1057-68, 2003 Oct 06.
Article in English | MEDLINE | ID: mdl-14517274

ABSTRACT

The M protein of Streptococcus pyogenes is a major bacterial virulence factor that confers resistance to phagocytosis. To analyze how M protein allows evasion of phagocytosis, we used the M22 protein, which has features typical of many M proteins and has two well-characterized regions binding human plasma proteins: the hypervariable NH2-terminal region binds C4b-binding protein (C4BP), which inhibits the classical pathway of complement activation; and an adjacent semivariable region binds IgA-Fc. Characterization of chromosomal S. pyogenes mutants demonstrated that each of the ligand-binding regions contributed to phagocytosis resistance, which could be fully explained as cooperation between the two regions. Deposition of complement on S. pyogenes occurred almost exclusively via the classical pathway, even under nonimmune conditions, but was down-regulated by bacteria-bound C4BP, providing an explanation for the ability of bound C4BP to inhibit phagocytosis. Different opsonizing antisera shared the ability to block binding of both C4BP and IgA, suggesting that the two regions in M22 play important roles also under immune conditions, as targets for protective antibodies. These data indicate that M22 and similar M proteins confer resistance to phagocytosis through ability to bind two components of the human immune system.


Subject(s)
Antigens, Bacterial , Bacterial Outer Membrane Proteins/physiology , Carrier Proteins/physiology , Complement Inactivator Proteins/metabolism , Glycoproteins , Immunoglobulin A/metabolism , Phagocytosis , Streptococcus pyogenes/immunology , Amino Acid Sequence , Animals , Antibodies, Bacterial/immunology , Bacterial Outer Membrane Proteins/chemistry , Binding Sites , Carrier Proteins/chemistry , Complement Pathway, Classical , Humans , Molecular Sequence Data , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...