Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122024 Jan 30.
Article in English | MEDLINE | ID: mdl-38289224

ABSTRACT

Ligand-gated ion channels transduce electrochemical signals in neurons and other excitable cells. Aside from canonical ligands, phospholipids are thought to bind specifically to the transmembrane domain of several ion channels. However, structural details of such lipid contacts remain elusive, partly due to limited resolution of these regions in experimental structures. Here, we discovered multiple lipid interactions in the channel GLIC by integrating cryo-electron microscopy and large-scale molecular simulations. We identified 25 bound lipids in the GLIC closed state, a conformation where none, to our knowledge, were previously known. Three lipids were associated with each subunit in the inner leaflet, including a buried interaction disrupted in mutant simulations. In the outer leaflet, two intrasubunit sites were evident in both closed and open states, while a putative intersubunit site was preferred in open-state simulations. This work offers molecular details of GLIC-lipid contacts particularly in the ill-characterized closed state, testable hypotheses for state-dependent binding, and a multidisciplinary strategy for modeling protein-lipid interactions.


Subject(s)
Ligand-Gated Ion Channels , Cryoelectron Microscopy , Binding Sites , Knowledge , Phospholipids
5.
Elife ; 102021 10 15.
Article in English | MEDLINE | ID: mdl-34652272

ABSTRACT

Ligand-gated ion channels conduct currents in response to chemical stimuli, mediating electrochemical signaling in neurons and other excitable cells. For many channels, the details of gating remain unclear, partly due to limited structural data and simulation timescales. Here, we used enhanced sampling to simulate the pH-gated channel GLIC, and construct Markov state models (MSMs) of gating. Consistent with new functional recordings, we report in oocytes, our analysis revealed differential effects of protonation and mutation on free-energy wells. Clustering of closed- versus open-like states enabled estimation of open probabilities and transition rates, while higher-order clustering affirmed conformational trends in gating. Furthermore, our models uncovered state- and protonation-dependent symmetrization. This demonstrates the applicability of MSMs to map energetic and conformational transitions between ion-channel functional states, and how they reproduce shifts upon activation or mutation, with implications for modeling neuronal function and developing state-selective drugs.


Subject(s)
Ligand-Gated Ion Channels/physiology , Nuclear Pore/physiology , Protons , Animals , Markov Chains , Xenopus laevis
6.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: mdl-34504004

ABSTRACT

Pentameric ligand-gated ion channels undergo subtle conformational cycling to control electrochemical signal transduction in many kingdoms of life. Several crystal structures have now been reported in this family, but the functional relevance of such models remains unclear. Here, we used small-angle neutron scattering (SANS) to probe ambient solution-phase properties of the pH-gated bacterial ion channel GLIC under resting and activating conditions. Data collection was optimized by inline paused-flow size-exclusion chromatography, and exchanging into deuterated detergent to hide the micelle contribution. Resting-state GLIC was the best-fit crystal structure to SANS curves, with no evidence for divergent mechanisms. Moreover, enhanced-sampling molecular-dynamics simulations enabled differential modeling in resting versus activating conditions, with the latter corresponding to an intermediate ensemble of both the extracellular and transmembrane domains. This work demonstrates state-dependent changes in a pentameric ion channel by SANS, an increasingly accessible method for macromolecular characterization with the coming generation of neutron sources.


Subject(s)
Bacterial Proteins/chemistry , Ion Channel Gating , Ligand-Gated Ion Channels/chemistry , Neutrons , Protein Multimerization , Protein Structure, Quaternary , Scattering, Small Angle , Cyanobacteria/metabolism , Molecular Dynamics Simulation
7.
ACS Pharmacol Transl Sci ; 4(3): 1079-1095, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34136757

ABSTRACT

The SARS-CoV-2 coronavirus outbreak continues to spread at a rapid rate worldwide. The main protease (Mpro) is an attractive target for anti-COVID-19 agents. Unexpected difficulties have been encountered in the design of specific inhibitors. Here, by analyzing an ensemble of ∼30 000 SARS-CoV-2 Mpro conformations from crystallographic studies and molecular simulations, we show that small structural variations in the binding site dramatically impact ligand binding properties. Hence, traditional druggability indices fail to adequately discriminate between highly and poorly druggable conformations of the binding site. By performing ∼200 virtual screenings of compound libraries on selected protein structures, we redefine the protein's druggability as the consensus chemical space arising from the multiple conformations of the binding site formed upon ligand binding. This procedure revealed a unique SARS-CoV-2 Mpro blueprint that led to a definition of a specific structure-based pharmacophore. The latter explains the poor transferability of potent SARS-CoV Mpro inhibitors to SARS-CoV-2 Mpro, despite the identical sequences of the active sites. Importantly, application of the pharmacophore predicted novel high affinity inhibitors of SARS-CoV-2 Mpro, that were validated by in vitro assays performed here and by a newly solved X-ray crystal structure. These results provide a strong basis for effective rational drug design campaigns against SARS-CoV-2 Mpro and a new computational approach to screen protein targets with malleable binding sites.

8.
Bioinformatics ; 35(18): 3505-3507, 2019 09 15.
Article in English | MEDLINE | ID: mdl-30838394

ABSTRACT

SUMMARY: Understanding how proteins transition between different conformers, and how conformers relate to each other in terms of structure and function, is not trivial. Here, we present an online tool for transition pathway generation between two protein conformations using Elastic Network Driven Brownian Dynamics Importance Sampling, a coarse-grained simulation algorithm, which spontaneously predicts transition intermediates trapped experimentally. In addition to path-generation, the server provides an interactive 2D-motion landscape graphical representation of the transitions or any additional conformers to explore their structural relationships. AVAILABILITY AND IMPLEMENTATION: eBDIMS is available online: http://ebdims.biophysics.se/ or as standalone software: https://github.com/laura-orellana/eBDIMS, https://github.com/cabergh/eBDIMS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Computers , Molecular Dynamics Simulation , Protein Conformation , Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...