Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Br J Anaesth ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38797635

ABSTRACT

BACKGROUND: It is unclear whether optimising intraoperative cardiac index can reduce postoperative complications. We tested the hypothesis that maintaining optimised postinduction cardiac index during and for the first 8 h after surgery reduces the incidence of a composite outcome of complications within 28 days after surgery compared with routine care in high-risk patients having elective major open abdominal surgery. METHODS: In three German and two Spanish centres, high-risk patients having elective major open abdominal surgery were randomised to cardiac index-guided therapy to maintain optimised postinduction cardiac index (cardiac index at which pulse pressure variation was <12%) during and for the first 8 h after surgery using intravenous fluids and dobutamine or to routine care. The primary outcome was the incidence of a composite outcome of moderate or severe complications within 28 days after surgery. RESULTS: We analysed 318 of 380 enrolled subjects. The composite primary outcome occurred in 84 of 152 subjects (55%) assigned to cardiac index-guided therapy and in 77 of 166 subjects (46%) assigned to routine care (odds ratio: 1.87, 95% confidence interval: 1.03-3.39, P=0.038). Per-protocol analyses confirmed the results of the primary outcome analysis. CONCLUSIONS: Maintaining optimised postinduction cardiac index during and for the first 8 h after surgery did not reduce, and possibly increased, the incidence of a composite outcome of complications within 28 days after surgery compared with routine care in high-risk patients having elective major open abdominal surgery. Clinicians should not strive to maintain optimised postinduction cardiac index during and after surgery in expectation of reducing complications. CLINICAL TRIAL REGISTRATION: NCT03021525.

2.
J Clin Anesth ; 95: 111459, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38599161

ABSTRACT

STUDY OBJECTIVE: Processed electroencephalography (pEEG) may help clinicians optimize depth of general anesthesia. Avoiding excessive depth of anesthesia may reduce intraoperative hypotension and the need for vasopressors. We tested the hypothesis that pEEG-guided - compared to non-pEEG-guided - general anesthesia reduces the amount of norepinephrine needed to keep intraoperative mean arterial pressure above 65 mmHg in patients having vascular surgery. DESIGN: Randomized controlled clinical trial. SETTING: University Medical Center Hamburg-Eppendorf, Hamburg, Germany. PATIENTS: 110 patients having vascular surgery. INTERVENTIONS: pEEG-guided general anesthesia. MEASUREMENTS: Our primary endpoint was the average norepinephrine infusion rate from the beginning of induction of anesthesia until the end of surgery. MAIN RESULT: 96 patients were analyzed. The mean ± standard deviation average norepinephrine infusion rate was 0.08 ± 0.04 µg kg-1 min-1 in patients assigned to pEEG-guided and 0.12 ± 0.09 µg kg-1 min-1 in patients assigned to non-pEEG-guided general anesthesia (mean difference 0.04 µg kg-1 min-1, 95% confidence interval 0.01 to 0.07 µg kg-1 min-1, p = 0.004). Patients assigned to pEEG-guided versus non-pEEG-guided general anesthesia, had a median time-weighted minimum alveolar concentration of 0.7 (0.6, 0.8) versus 0.8 (0.7, 0.8) (p = 0.006) and a median percentage of time Patient State Index was <25 of 12 (1, 41) % versus 23 (3, 49) % (p = 0.279). CONCLUSION: pEEG-guided - compared to non-pEEG-guided - general anesthesia reduced the amount of norepinephrine needed to keep mean arterial pressure above 65 mmHg by about a third in patients having vascular surgery. Whether reduced intraoperative norepinephrine requirements resulting from pEEG-guided general anesthesia translate into improved patient-centered outcomes remains to be determined in larger trials.


Subject(s)
Anesthesia, General , Electroencephalography , Norepinephrine , Vascular Surgical Procedures , Vasoconstrictor Agents , Humans , Anesthesia, General/methods , Norepinephrine/administration & dosage , Male , Female , Middle Aged , Aged , Electroencephalography/drug effects , Vascular Surgical Procedures/adverse effects , Vasoconstrictor Agents/administration & dosage , Hypotension/prevention & control , Arterial Pressure/drug effects , Monitoring, Intraoperative/methods
3.
Medicina (Kaunas) ; 59(7)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37512110

ABSTRACT

Hypotension can occur before, during, and after surgery and is associated with postoperative complications. Anesthesiologists should thus avoid profound and prolonged hypotension. A crucial part of avoiding hypotension is accurate and tight blood pressure monitoring. In this narrative review, we briefly describe methods for continuous blood pressure monitoring, discuss current evidence for continuous blood pressure monitoring in patients having surgery to reduce perioperative hypotension, and expand on future directions and innovations in this field. In summary, continuous blood pressure monitoring with arterial catheters or noninvasive sensors enables clinicians to detect and treat hypotension immediately. Furthermore, advanced hemodynamic monitoring technologies and artificial intelligence-in combination with continuous blood pressure monitoring-may help clinicians identify underlying causes of hypotension or even predict hypotension before it occurs.


Subject(s)
Artificial Intelligence , Hypotension , Humans , Blood Pressure , Monitoring, Intraoperative/adverse effects , Monitoring, Intraoperative/methods , Blood Pressure Determination/methods , Hypotension/diagnosis
4.
Anesthesiology ; 139(3): 298-308, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37265355

ABSTRACT

BACKGROUND: Finger-cuff methods allow noninvasive continuous arterial pressure monitoring. This study aimed to determine whether continuous finger-cuff arterial pressure monitoring helps clinicians reduce hypotension within 15 min after starting induction of anesthesia and during noncardiac surgery. Specifically, this study tested the hypotheses that continuous finger-cuff-compared to intermittent oscillometric-arterial pressure monitoring helps clinicians reduce the area under a mean arterial pressure of 65 mmHg within 15 min after starting induction of anesthesia and the time-weighted average mean arterial pressure less than 65 mmHg during noncardiac surgery. METHODS: In this single-center trial, 242 noncardiac surgery patients were randomized to unblinded continuous finger-cuff arterial pressure monitoring or to intermittent oscillometric arterial pressure monitoring (with blinded continuous finger-cuff arterial pressure monitoring). The first of two hierarchical primary endpoints was the area under a mean arterial pressure of 65 mmHg within 15 min after starting induction of anesthesia; the second primary endpoint was the time-weighted average mean arterial pressure less than 65 mmHg during surgery. RESULTS: Within 15 min after starting induction of anesthesia, the median (interquartile range) area under a mean arterial pressure of 65 mmHg was 7 (0, 24) mmHg × min in 109 patients assigned to continuous finger-cuff monitoring versus 19 (0.3, 60) mmHg × min in 113 patients assigned to intermittent oscillometric monitoring (P = 0.004; estimated location shift: -6 [95% CI: -15 to -0.3] mmHg × min). During surgery, the median (interquartile range) time-weighted average mean arterial pressure less than 65 mmHg was 0.04 (0, 0.27) mmHg in 112 patients assigned to continuous finger-cuff monitoring and 0.40 (0.03, 1.74) mmHg in 115 patients assigned to intermittent oscillometric monitoring (P < 0.001; estimated location shift: -0.17 [95% CI: -0.41 to -0.05] mmHg). CONCLUSIONS: Continuous finger-cuff arterial pressure monitoring helps clinicians reduce hypotension within 15 min after starting induction of anesthesia and during noncardiac surgery compared to intermittent oscillometric arterial pressure monitoring.


Subject(s)
Anesthesia , Hypotension , Humans , Arterial Pressure , Hypotension/diagnosis , Blood Pressure Determination/methods , Vascular Surgical Procedures , Blood Pressure
5.
Anesth Analg ; 137(1): 169-175, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36622833

ABSTRACT

BACKGROUND: Perioperative hemodynamic management aims to optimize organ perfusion pressure and blood flow-assuming this ensures that oxygen delivery meets cellular metabolic needs. Cellular metabolic needs are reflected by energy expenditure. A better understanding of energy expenditure under general anesthesia could help tailor perioperative hemodynamic management to actual demands. We thus sought to assess energy expenditure under general anesthesia. Our primary hypothesis was that energy expenditure under general anesthesia is lower than preoperative awake resting energy expenditure. METHODS: We conducted an observational study on patients having elective noncardiac surgery at the University Medical Center Hamburg-Eppendorf (Germany) between September 2019 and March 2020. We assessed preoperative awake resting energy expenditure, energy expenditure under general anesthesia, and energy expenditure after surgery using indirect calorimetry. We compared energy expenditure under general anesthesia at incision to preoperative awake resting energy expenditure using a Wilcoxon signed-rank test for paired measurements. RESULTS: We analyzed 60 patients. Median (95% confidence interval [CI]) preoperative awake resting energy expenditure was 953 (95% CI, 906-962) kcal d -1 m -2 . Median energy expenditure under general anesthesia was 680 (95% CI, 642-711) kcal d -1 m -2 -and thus 263 (95% CI, 223-307) kcal d -1 m -2 or 27% (95% CI, 23%-30%) lower than preoperative awake resting energy expenditure ( P < .001). CONCLUSIONS: Median energy expenditure under general anesthesia is about one-quarter lower than preoperative awake resting energy expenditure in patients having noncardiac surgery.


Subject(s)
Basal Metabolism , Energy Metabolism , Humans , Calorimetry, Indirect , Anesthesia, General , Germany
6.
Br J Anaesth ; 130(3): 253-261, 2023 03.
Article in English | MEDLINE | ID: mdl-36526483

ABSTRACT

BACKGROUND: Intraoperative hypotension is associated with myocardial injury, acute kidney injury, and death. In routine practice, specific causes of intraoperative hypotension are often unclear. A more detailed understanding of underlying haemodynamic alterations of intraoperative hypotension may identify specific treatments. We thus aimed to use machine learning - specifically, hierarchical clustering - to identify underlying haemodynamic alterations causing intraoperative hypotension in major abdominal surgery patients. Specifically, we tested the hypothesis that there are distinct endotypes of intraoperative hypotension, which may help refine therapeutic interventions. METHODS: We conducted a secondary analysis of intraoperative haemodynamic measurements from a prospective observational study in 100 patients who had major abdominal surgery under general anaesthesia. We used stroke volume index, heart rate, cardiac index, systemic vascular resistance index, and pulse pressure variation measurements. Intraoperative hypotension was defined as any mean arterial pressure ≤65 mm Hg or a mean arterial pressure between 66 and 75 mm Hg requiring a norepinephrine infusion rate exceeding 0.1 µg kg-1 min-1. To identify endotypes of intraoperative hypotension, we used hierarchical clustering (Ward's method). RESULTS: A total of 615 episodes of intraoperative hypotension occurred in 82 patients (46 [56%] female; median age: 64 [57, 73] yr) who had surgery of a median duration of 270 (195, 335) min. Hierarchical clustering revealed six distinct intraoperative hypotension endotypes. Based on their clinical characteristics, we labelled these endotypes as (1) myocardial depression, (2) bradycardia, (3) vasodilation with cardiac index increase, (4) vasodilation without cardiac index increase, (5) hypovolaemia, and (6) mixed type. CONCLUSION: Hierarchical clustering identified six endotypes of intraoperative hypotension. If validated, considering these intraoperative hypotension endotypes may enable causal treatment of intraoperative hypotension.


Subject(s)
Hypotension , Monitoring, Intraoperative , Humans , Female , Middle Aged , Male , Retrospective Studies , Monitoring, Intraoperative/methods , Hypotension/etiology , Cohort Studies , Machine Learning , Postoperative Complications
7.
Trials ; 23(1): 946, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36397173

ABSTRACT

BACKGROUND: Intraoperative hypotension is common in patients having non-cardiac surgery and is associated with serious complications and death. However, optimal intraoperative blood pressures for individual patients remain unknown. We therefore aim to test the hypothesis that personalized perioperative blood pressure management-based on preoperative automated blood pressure monitoring-reduces the incidence of a composite outcome of acute kidney injury, acute myocardial injury, non-fatal cardiac arrest, and death within 7 days after surgery compared to routine blood pressure management in high-risk patients having major abdominal surgery. METHODS: IMPROVE-multi is a multicenter randomized trial in 1272 high-risk patients having elective major abdominal surgery that we plan to conduct at 16 German university medical centers. Preoperative automated blood pressure monitoring using upper arm cuff oscillometry will be performed in all patients for one night to obtain the mean of the nighttime mean arterial pressures. Patients will then be randomized either to personalized blood pressure management or to routine blood pressure management. In patients assigned to personalized management, intraoperative mean arterial pressure will be maintained at least at the mean of the nighttime mean arterial pressures. In patients assigned to routine management, intraoperative blood pressure will be managed per routine. The primary outcome will be a composite of acute kidney injury, acute myocardial injury, non-fatal cardiac arrest, and death within 7 days after surgery. DISCUSSION: Our trial will determine whether personalized perioperative blood pressure management reduces the incidence of major postoperative complications and death within 7 days after surgery compared to routine blood pressure management in high-risk patients having major abdominal surgery. TRIAL REGISTRATION: ClinicalTrials.gov NCT05416944. Registered on June 14, 2022.


Subject(s)
Acute Kidney Injury , Heart Arrest , Humans , Blood Pressure , Abdomen/surgery , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Postoperative Complications/epidemiology , Acute Kidney Injury/complications , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
8.
Eur J Anaesthesiol ; 39(11): 851-857, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36155392

ABSTRACT

BACKGROUND: The NICCI system (Getinge, Gothenburg, Sweden) is a new noninvasive haemodynamic monitoring system using a finger sensor. OBJECTIVES: We aimed to investigate the performance of the NICCI system to measure blood pressure and pulse pressure variation compared with intra-arterial measurements. DESIGN: A prospective method comparison study. SETTING: University Medical Center Hamburg-Eppendorf, Hamburg, Germany. PATIENTS: Forty-seven neurosurgery patients. MAIN OUTCOME MEASURES: We performed a method comparison study in 47 neurosurgery patients to compare NICCI blood pressure measurements (BP NICCI ) with intra-arterial blood pressure measurements (BP ART ) (Bland-Altman analysis, four-quadrant plot, error grid analysis) and NICCI pulse pressure variation measurements (PPV NICCI ) with pulse pressure variation calculated manually from the intra-arterial blood pressure waveform (PPV ART ) (Bland-Altman analysis, predictive agreement, Cohen's kappa). RESULTS: The mean of the differences ±â€Šstandard deviation (95% limits of agreement) between BP NICCI and BP ART was 11 ±â€Š10 mmHg (-8 to 30 mmHg) for mean blood pressure (MBP), 3 ±â€Š12 mmHg (-21 to 26 mmHg) for systolic blood pressure (SBP) and 12 ±â€Š10 mmHg (-8 to 31 mmHg) for diastolic blood pressure (DBP). In error grid analysis, 54% of BP NICCI and BP ART MBP measurement pairs were classified as 'no risk', 43% as 'low risk', 3% as 'moderate risk' and 0% as 'significant risk' or 'dangerous risk'. The mean of the differences between PPV NICCI and PPV ART was 1 ±â€Š3% (-4 to 6%). The predictive agreement between PPV NICCI and PPV ART was 80% and Cohen's kappa was 0.55. CONCLUSIONS: The absolute agreement between BP NICCI and BP ART was not clinically acceptable. We recommend not using the current version of the NICCI system for blood pressure monitoring during surgery. The absolute agreement between PPV NICCI and PPV ART was clinically acceptable with moderate predictive agreement regarding pulse pressure variation categories. The NICCI system needs to be further developed and re-evaluated when an improved version is available. TRIAL REGISTRATION: The study was registered in the German Clinical Trials Register (DRKS00023188) on 2 October 2020.


Subject(s)
Neurosurgery , Arterial Pressure/physiology , Blood Pressure/physiology , Blood Pressure Determination/methods , Humans , Monitoring, Intraoperative/methods
9.
Br J Anaesth ; 129(4): 478-486, 2022 10.
Article in English | MEDLINE | ID: mdl-36008202

ABSTRACT

BACKGROUND: Hypotension during induction of anaesthesia is associated with organ injury. Continuous arterial pressure monitoring might help reduce hypotension. We tested the hypothesis that continuous intra-arterial compared with intermittent oscillometric arterial pressure monitoring reduces hypotension during induction of anaesthesia in noncardiac surgery patients. METHODS: In this single-centre randomised trial, 242 noncardiac surgery patients in whom intra-arterial arterial pressure monitoring was planned were randomised to unblinded continuous intra-arterial or to intermittent oscillometric arterial pressure monitoring (with blinded intra-arterial arterial pressure monitoring) during induction of anaesthesia. The primary endpoint was the area under a mean arterial pressure (MAP) of 65 mm Hg within the first 15 min of induction of anaesthesia. Secondary endpoints included areas under MAP values of 60, 50, and 40 mm Hg and durations of MAP values <65, <60, <50, and <40 mm Hg. RESULTS: There were 224 subjects available for analysis. The median (25th-75th percentile) area under a MAP of 65 mm Hg was 15 (2-36) mm Hg • min in subjects assigned to continuous intra-arterial monitoring and 46 (7-111) mm Hg • min in subjects assigned to intermittent oscillometric monitoring (P<0.001). Subjects assigned to continuous intra-arterial monitoring had smaller areas under MAP values of 60, 50, and 40 mm Hg and shorter durations of MAP values <65, <60, <50, and <40 mm Hg than subjects assigned to intermittent oscillometric monitoring. CONCLUSION: Continuous intra-arterial arterial pressure monitoring reduces hypotension during induction of anaesthesia compared with intermittent oscillometric arterial pressure monitoring in noncardiac surgery patients. In patients for whom an arterial catheter is planned, clinicians might therefore consider inserting the arterial catheter before rather than after induction of anaesthesia. CLINICAL TRIALS REGISTRATION: NCT04894019.


Subject(s)
Blood Pressure Determination , Hypotension , Anesthesia, General/adverse effects , Arterial Pressure , Humans , Hypotension/diagnosis , Hypotension/etiology , Hypotension/prevention & control , Wakefulness
11.
J Clin Monit Comput ; 36(6): 1817-1825, 2022 12.
Article in English | MEDLINE | ID: mdl-35233702

ABSTRACT

PURPOSE: Predicting fluid responsiveness is essential when treating surgical or critically ill patients. When using a pulmonary artery catheter, pulse pressure variation and systolic pressure variation can be calculated from right ventricular and pulmonary artery pressure waveforms. METHODS: We conducted a prospective interventional study investigating the ability of right ventricular pulse pressure variation (PPVRV) and systolic pressure variation (SPVRV) as well as pulmonary artery pulse pressure variation (PPVPA) and systolic pressure variation (SPVPA) to predict fluid responsiveness in coronary artery bypass (CABG) surgery patients. Additionally, radial artery pulse pressure variation (PPVART) and systolic pressure variation (SPVART) were calculated. The area under the receiver operating characteristics (AUROC) curve with 95%-confidence interval (95%-CI) was used to assess the capability to predict fluid responsiveness (defined as an increase in cardiac index of > 15%) after a 500 mL crystalloid fluid challenge. RESULTS: Thirty-three patients were included in the final analysis. Thirteen patients (39%) were fluid-responders with a mean increase in cardiac index of 25.3%. The AUROC was 0.60 (95%-CI 0.38 to 0.81) for PPVRV, 0.63 (95%-CI 0.43 to 0.83) for SPVRV, 0.58 (95%-CI 0.38 to 0.78) for PPVPA, and 0.71 (95%-CI 0.52 to 0.89) for SPVPA. The AUROC for PPVART was 0.71 (95%-CI 0.53 to 0.89) and for SPVART 0.78 (95%-CI 0.62 to 0.94). The correlation between pulse pressure variation and systolic pressure variation measurements derived from the different waveforms was weak. CONCLUSIONS: Right ventricular and pulmonary artery pulse pressure variation and systolic pressure variation seem to be weak predictors of fluid responsiveness in CABG surgery patients.


Subject(s)
Fluid Therapy , Pulmonary Artery , Humans , Blood Pressure , Prospective Studies , Pulmonary Artery/surgery , Coronary Artery Bypass , Hemodynamics , Stroke Volume
12.
J Clin Monit Comput ; 36(6): 1775-1783, 2022 12.
Article in English | MEDLINE | ID: mdl-35201549

ABSTRACT

Acute myocardial injury is common after noncardiac surgery and associated with mortality. Impaired intraoperative cardiovascular dynamics are a risk factor for acute myocardial injury. Optimizing intraoperative cardiovascular dynamics may thus reduce acute myocardial injury. We aimed to investigate the effect of intraoperative personalized goal-directed hemodynamic management on the incidence of acute myocardial injury. We hypothesized that personalized goal-directed hemodynamic management reduces the incidence of acute myocardial injury compared to routine hemodynamic management in high-risk patients having major abdominal surgery. We performed a post-hoc secondary analysis of a randomized clinical trial including 180 high-risk major abdominal surgery patients that were randomized to personalized goal-directed hemodynamic management or routine hemodynamic management. We compared the incidences of acute myocardial injury-defined according to the Fourth Universal Definition of Myocardial Infarction (2018)-between patients randomized to personalized goal-directed hemodynamic management or routine hemodynamic management by calculating the relative and absolute risk reduction together with 95% Wald confidence intervals and P values. Acute myocardial injury occurred in 4 of 90 patients (4%) in the personalized goal-directed hemodynamic management group and in 12 of 90 patients (13%) in the routine hemodynamic management group (relative risk: 0.33, 95% confidence interval: 0.11 to 0.99, P = 0.036; absolute risk reduction: - 9%, 95% confidence interval: - 17% to - 0.68%, P = 0.034). In this post-hoc secondary analysis, intraoperative personalized goal-directed hemodynamic management reduced the incidence of acute myocardial injury compared to routine hemodynamic management in high-risk patients having major abdominal surgery. This needs to be confirmed in larger prospective trials.


Subject(s)
Abdomen , Goals , Humans , Prospective Studies , Abdomen/surgery , Hemodynamics , Risk Factors , Postoperative Complications/prevention & control
13.
Anesth Analg ; 134(2): 322-329, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34854823

ABSTRACT

BACKGROUND: Cardiac output is an important hemodynamic variable and determines oxygen delivery. In contrast to blood pressure, cardiac output is rarely measured even in high-risk surgical patients, suggesting that clinicians consider blood pressure to be a reasonable indicator of systemic blood flow. However, the relationship depends on constant vascular tone and volume, both of which routinely vary during anesthesia and surgery. We therefore tested the hypothesis that there is no clinically meaningful correlation between mean arterial pressure and cardiac index in major abdominal surgery patients. METHODS: In this prospective observational study, we assessed the relationship between mean arterial pressure and cardiac index in 100 patients having major abdominal surgery under general anesthesia. RESULTS: The pooled within-patient correlation coefficient calculated using meta-analysis methods was r = 0.34 (95% confidence interval, 0.28-0.40). Linear regression using a linear mixed effects model of cardiac index on mean arterial pressure revealed that cardiac index increases by 0.014 L·min-1·m-2 for each 1 mm Hg increase in mean arterial pressure. The 95% Wald confidence interval of this slope was 0.011 to 0.018 L·min-1·m-2·mm Hg-1 and thus within predefined equivalence margins of -0.03 and 0.03 L·min-1·m-2·mm Hg-1, thereby demonstrating lack of clinically meaningful association between mean arterial pressure and cardiac index. CONCLUSIONS: There is no clinically meaningful correlation between mean arterial pressure and cardiac index in patients having major abdominal surgery. Intraoperative blood pressure is thus a poor surrogate for cardiac index.


Subject(s)
Abdomen/surgery , Arterial Pressure/physiology , Blood Flow Velocity/physiology , Cardiac Output/physiology , Monitoring, Intraoperative/methods , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Prospective Studies
14.
Crit Care ; 25(1): 125, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33781307

ABSTRACT

BACKGROUND: Pulmonary artery thermodilution is the clinical reference method for cardiac output monitoring. Because both continuous and intermittent pulmonary artery thermodilution are used in clinical practice it is important to know whether cardiac output measurements by the two methods are clinically interchangeable. METHODS: We performed a systematic review and meta-analysis of clinical studies comparing cardiac output measurements assessed using continuous and intermittent pulmonary artery thermodilution in adult surgical and critically ill patients. 54 studies with 1522 patients were included in the analysis. RESULTS: The heterogeneity across the studies was high. The overall random effects model-derived pooled estimate of the mean of the differences was 0.08 (95%-confidence interval 0.01 to 0.16) L/min with pooled 95%-limits of agreement of - 1.68 to 1.85 L/min and a pooled percentage error of 29.7 (95%-confidence interval 20.5 to 38.9)%. CONCLUSION: The heterogeneity across clinical studies comparing continuous and intermittent pulmonary artery thermodilution in adult surgical and critically ill patients is high. The overall trueness/accuracy of continuous pulmonary artery thermodilution in comparison with intermittent pulmonary artery thermodilution is good (indicated by a pooled mean of the differences < 0.1 L/min). Pooled 95%-limits of agreement of - 1.68 to 1.85 L/min and a pooled percentage error of 29.7% suggest that continuous pulmonary artery thermodilution barely passes interchangeability criteria with intermittent pulmonary artery thermodilution. PROSPERO registration number CRD42020159730.


Subject(s)
Cardiac Output/physiology , Pulmonary Artery/physiopathology , Thermodilution/instrumentation , Weights and Measures/instrumentation , Humans , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Reproducibility of Results , Thermodilution/methods , Weights and Measures/standards
15.
PLoS One ; 15(9): e0239928, 2020.
Article in English | MEDLINE | ID: mdl-32991616

ABSTRACT

A solid understanding of basic sciences is a prerequisite for successful completion of medical education. Therefore, it is essential to improve the quality of teaching and to ensure the applicability of basic sciences. Based on practical experiences and previous research, we developed an innovative step-by-step concept, called ENHANCE, for the implementation or revision of teaching units, especially for basic sciences. We used comparative self-assessment gains, a questionnaire to assess teaching quality as well as end-of-semester evaluations (students' satisfaction and open-ended questions) to evaluate the ENHANCE concept. It was found that ENHANCE-based teaching units were related to increased students' satisfaction, high attendance rates and that restructuring the course curriculum yielded in a positive assessment of teaching effectiveness. The revised courses were rated as the very best of all classes in several semesters. Qualitative data showed that students particularly appreciated the level of comprehension and how helpful the courses were for the understanding and preparation of the regular curriculum.


Subject(s)
Education, Medical/methods , Practice Guidelines as Topic , Science/education , Teaching/standards , Education, Medical/standards , Humans , Quality Improvement
SELECTION OF CITATIONS
SEARCH DETAIL
...