Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(23): 236202, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38134765

ABSTRACT

A method for measuring helium atom diffraction with micron-scale spatial resolution is demonstrated in a scanning helium microscope (SHeM) and applied to study a micron-scale spot on the (100) plane of a lithium fluoride (LiF) crystal. The positions of the observed diffraction peaks provide an accurate measurement of the local lattice spacing, while a combination of close-coupled scattering calculations and Monte Carlo ray-tracing simulations reproduce the main variations in diffracted intensity. Subsequently, the diffraction results are used to enhance image contrast by measuring at different points in reciprocal space. The results open up the possibility for using helium microdiffraction to characterize the morphology of delicate or electron-sensitive materials on small scales. These include many fundamentally and technologically important samples which cannot be studied in conventional atom scattering instruments, such as small grain size exfoliated 2D materials, polycrystalline samples, and other surfaces that do not exhibit long-range order.

2.
Nat Commun ; 11(1): 3110, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32561837

ABSTRACT

The coherent evolution of a molecular quantum state during a molecule-surface collision is a detailed descriptor of the interaction potential which was so far inaccessible to measurements. Here we use a magnetically controlled molecular beam technique to study the collision of rotationally oriented ground state hydrogen molecules with a lithium fluoride surface. The coherent control nature of the technique allows us to measure the changes in the complex amplitudes of the rotational projection quantum states, and express them using a scattering matrix formalism. The quantum state-to-state transition probabilities we extract reveal a strong dependency of the molecule-surface interaction on the rotational orientation of the molecules, and a remarkably high probability of the collision flipping the rotational orientation. The scattering matrix we obtain from the experimental data delivers an ultra-sensitive benchmark for theory to reproduce, guiding the development of accurate theoretical models for the interaction of H2 with a solid surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...