Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 7125, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532065

ABSTRACT

Water pollution presents a substantial environmental challenge with extensive implications for water resources, ecosystem sustainability, and human health. Using a South African catchment, this study aimed to provide watershed managers with a framework for selecting best management practices (BMPs) to reduce pollution and the related risk to river users, while also including the perspectives of key catchment stakeholders. The framework encompassed the identification of and consultation with key stakeholders within the catchment. A Multi-Criteria Decision Analysis (MCDA) methodology using the Simple Multi-Attribute Rating Technique for Enhanced Stakeholder Take-up (SMARTEST) was used to identify and prioritise suitable BMPs in a case study. Decision alternatives and assessment criteria as well as their weights were derived based on stakeholder responses to a two-stage survey. Stakeholders included those utilising the river for domestic and recreational purposes, municipal representatives, scientists, NGOs, and engineers. The assessment of decision alternatives considered environmental, economic, and social criteria. The aggregated scores for decision alternatives highlighted the significance of involving stakeholders throughout the decision process. This study recommends the pairing of structural and non-structural BMPs. The findings provide valuable insights for catchment managers, policymakers, and environmental stakeholders seeking inclusive and effective pollution mitigation strategies in a catchment.

2.
J Water Health ; 20(4): 641-656, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35482381

ABSTRACT

South African rivers generally receive waste from inadequate wastewater infrastructure, mines, and farming activities, among others. The uMsunduzi River in KwaZulu-Natal, South Africa, is among these recipients with recorded poor to very poor water quality. To identify parts of the uMsunduzi River that are polluted by Cryptosporidium and Escherichia coli (E. coli), this study mapped out pollutants emanating from point and non-point sources using the Soil and Water Assessment Tool (SWAT). Streamflow calibration in the upper and lower reaches of the catchment showed good performance with R2 of 0.64 and 0.58, respectively. SWAT water quality output data were combined with a Quantitative Microbial Risk Assessment (QMRA) to understand the microbial health implications for people using river water for drinking, recreational swimming, and non-competitive canoeing. QMRA results for Cryptosporidium and pathogenic E. coli showed that the probability of infection for most users exceeds the acceptable level for drinking and recreation as outlined in the South African water quality guidelines, and by the World Health Organization (WHO). The results of this study can be used as a baseline to assess the economic and health implications of different management plans, resulting in better-informed, cost-effective, and impactful decision-making.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Escherichia coli , Humans , Risk Assessment , Rivers/chemistry , South Africa , Water Quality
3.
Water Res ; 132: 111-123, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29316514

ABSTRACT

Waterborne outbreaks of gastrointestinal diseases can cause large costs to society. Risk management needs to be holistic and transparent in order to reduce these risks in an effective manner. Microbial risk mitigation measures in a drinking water system were investigated using a novel approach combining probabilistic risk assessment and cost-benefit analysis. Lake Vomb in Sweden was used to exemplify and illustrate the risk-based decision model. Four mitigation alternatives were compared, where the first three alternatives, A1-A3, represented connecting 25, 50 and 75%, respectively, of on-site wastewater treatment systems in the catchment to the municipal wastewater treatment plant. The fourth alternative, A4, represented installing a UV-disinfection unit in the drinking water treatment plant. Quantitative microbial risk assessment was used to estimate the positive health effects in terms of quality adjusted life years (QALYs), resulting from the four mitigation alternatives. The health benefits were monetised using a unit cost per QALY. For each mitigation alternative, the net present value of health and environmental benefits and investment, maintenance and running costs was calculated. The results showed that only A4 can reduce the risk (probability of infection) below the World Health Organization guidelines of 10-4 infections per person per year (looking at the 95th percentile). Furthermore, all alternatives resulted in a negative net present value. However, the net present value would be positive (looking at the 50th percentile using a 1% discount rate) if non-monetised benefits (e.g. increased property value divided evenly over the studied time horizon and reduced microbial risks posed to animals), estimated at 800-1200 SEK (€100-150) per connected on-site wastewater treatment system per year, were included. This risk-based decision model creates a robust and transparent decision support tool. It is flexible enough to be tailored and applied to local settings of drinking water systems. The model provides a clear and holistic structure for decisions related to microbial risk mitigation. To improve the decision model, we suggest to further develop the valuation and monetisation of health effects and to refine the propagation of uncertainties and variabilities between the included methods.


Subject(s)
Decision Support Techniques , Drinking Water/microbiology , Water Purification/economics , Cost-Benefit Analysis , Disinfection , Humans , Risk Assessment , Sweden , Ultraviolet Rays , Waste Disposal, Fluid/economics , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...