Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Glia ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38894643

ABSTRACT

Experiments to study the biology of addiction have historically focused on the mechanisms through which drugs of abuse drive changes in the functioning of neurons and neural circuits. Glia have often been ignored in these studies, however, and this has left many questions in the field unanswered, particularly, surrounding how glia contribute to changes in synaptic plasticity, regulation of neuroinflammation, and functioning of neural ensembles given massive changes in signaling across the CNS. Omics methods (transcriptomics, translatomics, epigenomics, proteomics, metabolomics, and others) have expanded researchers' abilities to generate hypotheses and carry out mechanistic studies of glial cells during acquisition of drug taking, intoxication, withdrawal, and relapse to drug seeking. Here, we present a survey of how omics technological advances are revising our understanding of astrocytes, microglia, oligodendrocytes, and ependymal cells in addiction biology.

2.
Genes Brain Behav ; 21(7): e12801, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35304804

ABSTRACT

The lateral habenula (LHb) is a small, bilateral, epithalamic nucleus which processes aversive information. While primarily glutamatergic, LHb neurons express genes coding for many neuropeptides, such as Adcyap1 the gene encoding pituitary adenylate cyclase-activating polypeptide (PACAP), which itself has been associated with anxiety and stress disorders. Using Cre-dependent viral vectors, we targeted and characterized these neurons based on their anatomical projections and found that they projected to both the raphe and rostromedial tegmentum but only weakly to ventral tegmental area. Using RiboTag to capture ribosomal-associated mRNA from these neurons and reanalysis of existing single cell RNA sequencing data, we did not identify a unique molecular phenotype that characterized these PACAP-expressing neurons in LHb. In order to understand the function of these neurons, we conditionally expressed hM3 Dq DREADD selectively in LHb PACAP-expressing neurons and chemogenetically excited these neurons during behavioral testing in the open field test, contextual fear conditioning, sucrose preference, novelty suppressed feeding, and conditioned place preference. We found that Gq activation of these neurons produce behaviors opposite to what is expected from the LHb as a whole-they decreased anxiety-like and fear behavior and produced a conditioned place preference. In conclusion, PACAP-expressing neurons in LHb represents a molecularly diverse population of cells that oppose the actions of the remainder of LHb neurons by being rewarding or diminishing the negative consequences of aversive events.


Subject(s)
Habenula , Habenula/physiology , Neurons/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Tegmentum Mesencephali/physiology , Ventral Tegmental Area/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...