Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 11106, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37429871

ABSTRACT

Acoustic identification of vocalizing individuals opens up new and deeper insights into animal communications, such as individual-/group-specific dialects, turn-taking events, and dialogs. However, establishing an association between an individual animal and its emitted signal is usually non-trivial, especially for animals underwater. Consequently, a collection of marine species-, array-, and position-specific ground truth localization data is extremely challenging, which strongly limits possibilities to evaluate localization methods beforehand or at all. This study presents ORCA-SPY, a fully-automated sound source simulation, classification and localization framework for passive killer whale (Orcinus orca) acoustic monitoring that is embedded into PAMGuard, a widely used bioacoustic software toolkit. ORCA-SPY enables array- and position-specific multichannel audio stream generation to simulate real-world ground truth killer whale localization data and provides a hybrid sound source identification approach integrating ANIMAL-SPOT, a state-of-the-art deep learning-based orca detection network, followed by downstream Time-Difference-Of-Arrival localization. ORCA-SPY was evaluated on simulated multichannel underwater audio streams including various killer whale vocalization events within a large-scale experimental setup benefiting from previous real-world fieldwork experience. Across all 58,320 embedded vocalizing killer whale events, subject to various hydrophone array geometries, call types, distances, and noise conditions responsible for a signal-to-noise ratio varying from [Formula: see text] dB to 3 dB, a detection rate of 94.0 % was achieved with an average localization error of 7.01[Formula: see text]. ORCA-SPY was field-tested on Lake Stechlin in Brandenburg Germany under laboratory conditions with a focus on localization. During the field test, 3889 localization events were observed with an average error of 29.19[Formula: see text] and a median error of 17.54[Formula: see text]. ORCA-SPY was deployed successfully during the DeepAL fieldwork 2022 expedition (DLFW22) in Northern British Columbia, with a mean average error of 20.01[Formula: see text] and a median error of 11.01[Formula: see text] across 503 localization events. ORCA-SPY is an open-source and publicly available software framework, which can be adapted to various recording conditions as well as animal species.


Subject(s)
Deep Learning , Whale, Killer , Animals , Sound , Computer Simulation , Software
2.
Front Digit Health ; 5: 1058163, 2023.
Article in English | MEDLINE | ID: mdl-36969956

ABSTRACT

The COVID-19 pandemic has caused massive humanitarian and economic damage. Teams of scientists from a broad range of disciplines have searched for methods to help governments and communities combat the disease. One avenue from the machine learning field which has been explored is the prospect of a digital mass test which can detect COVID-19 from infected individuals' respiratory sounds. We present a summary of the results from the INTERSPEECH 2021 Computational Paralinguistics Challenges: COVID-19 Cough, (CCS) and COVID-19 Speech, (CSS).

3.
Sci Rep ; 12(1): 21966, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36535999

ABSTRACT

Bioacoustic research spans a wide range of biological questions and applications, relying on identification of target species or smaller acoustic units, such as distinct call types. However, manually identifying the signal of interest is time-intensive, error-prone, and becomes unfeasible with large data volumes. Therefore, machine-driven algorithms are increasingly applied to various bioacoustic signal identification challenges. Nevertheless, biologists still have major difficulties trying to transfer existing animal- and/or scenario-related machine learning approaches to their specific animal datasets and scientific questions. This study presents an animal-independent, open-source deep learning framework, along with a detailed user guide. Three signal identification tasks, commonly encountered in bioacoustics research, were investigated: (1) target signal vs. background noise detection, (2) species classification, and (3) call type categorization. ANIMAL-SPOT successfully segmented human-annotated target signals in data volumes representing 10 distinct animal species and 1 additional genus, resulting in a mean test accuracy of 97.9%, together with an average area under the ROC curve (AUC) of 95.9%, when predicting on unseen recordings. Moreover, an average segmentation accuracy and F1-score of 95.4% was achieved on the publicly available BirdVox-Full-Night data corpus. In addition, multi-class species and call type classification resulted in 96.6% and 92.7% accuracy on unseen test data, as well as 95.2% and 88.4% regarding previous animal-specific machine-based detection excerpts. Furthermore, an Unweighted Average Recall (UAR) of 89.3% outperformed the multi-species classification baseline system of the ComParE 2021 Primate Sub-Challenge. Besides animal independence, ANIMAL-SPOT does not rely on expert knowledge or special computing resources, thereby making deep-learning-based bioacoustic signal identification accessible to a broad audience.


Subject(s)
Deep Learning , Animals , Humans , Machine Learning , Algorithms , Acoustics , Area Under Curve
4.
Pattern Recognit ; 122: 108361, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34629550

ABSTRACT

The sudden outbreak of COVID-19 has resulted in tough challenges for the field of biometrics due to its spread via physical contact, and the regulations of wearing face masks. Given these constraints, voice biometrics can offer a suitable contact-less biometric solution; they can benefit from models that classify whether a speaker is wearing a mask or not. This article reviews the Mask Sub-Challenge (MSC) of the INTERSPEECH 2020 COMputational PARalinguistics challengE (ComParE), which focused on the following classification task: Given an audio chunk of a speaker, classify whether the speaker is wearing a mask or not. First, we report the collection of the Mask Augsburg Speech Corpus (MASC) and the baseline approaches used to solve the problem, achieving a performance of 71.8 % Unweighted Average Recall (UAR). We then summarise the methodologies explored in the submitted and accepted papers that mainly used two common patterns: (i) phonetic-based audio features, or (ii) spectrogram representations of audio combined with Convolutional Neural Networks (CNNs) typically used in image processing. Most approaches enhance their models by adapting ensembles of different models and attempting to increase the size of the training data using various techniques. We review and discuss the results of the participants of this sub-challenge, where the winner scored a UAR of 80.1 % . Moreover, we present the results of fusing the approaches, leading to a UAR of 82.6 % . Finally, we present a smartphone app that can be used as a proof of concept demonstration to detect in real-time whether users are wearing a face mask; we also benchmark the run-time of the best models.

5.
Sci Rep ; 11(1): 23480, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34873193

ABSTRACT

Biometric identification techniques such as photo-identification require an array of unique natural markings to identify individuals. From 1975 to present, Bigg's killer whales have been photo-identified along the west coast of North America, resulting in one of the largest and longest-running cetacean photo-identification datasets. However, data maintenance and analysis are extremely time and resource consuming. This study transfers the procedure of killer whale image identification into a fully automated, multi-stage, deep learning framework, entitled FIN-PRINT. It is composed of multiple sequentially ordered sub-components. FIN-PRINT is trained and evaluated on a dataset collected over an 8-year period (2011-2018) in the coastal waters off western North America, including 121,000 human-annotated identification images of Bigg's killer whales. At first, object detection is performed to identify unique killer whale markings, resulting in 94.4% recall, 94.1% precision, and 93.4% mean-average-precision (mAP). Second, all previously identified natural killer whale markings are extracted. The third step introduces a data enhancement mechanism by filtering between valid and invalid markings from previous processing levels, achieving 92.8% recall, 97.5%, precision, and 95.2% accuracy. The fourth and final step involves multi-class individual recognition. When evaluated on the network test set, it achieved an accuracy of 92.5% with 97.2% top-3 unweighted accuracy (TUA) for the 100 most commonly photo-identified killer whales. Additionally, the method achieved an accuracy of 84.5% and a TUA of 92.9% when applied to the entire 2018 image collection of the 100 most common killer whales. The source code of FIN-PRINT can be adapted to other species and will be publicly available.

6.
Sci Rep ; 11(1): 4343, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33623058

ABSTRACT

In many research areas, scientific progress is accelerated by multidisciplinary access to image data and their interdisciplinary annotation. However, keeping track of these annotations to ensure a high-quality multi-purpose data set is a challenging and labour intensive task. We developed the open-source online platform EXACT (EXpert Algorithm Collaboration Tool) that enables the collaborative interdisciplinary analysis of images from different domains online and offline. EXACT supports multi-gigapixel medical whole slide images as well as image series with thousands of images. The software utilises a flexible plugin system that can be adapted to diverse applications such as counting mitotic figures with a screening mode, finding false annotations on a novel validation view, or using the latest deep learning image analysis technologies. This is combined with a version control system which makes it possible to keep track of changes in the data sets and, for example, to link the results of deep learning experiments to specific data set versions. EXACT is freely available and has already been successfully applied to a broad range of annotation tasks, including highly diverse applications like deep learning supported cytology scoring, interdisciplinary multi-centre whole slide image tumour annotation, and highly specialised whale sound spectroscopy clustering.

7.
Sci Rep ; 9(1): 10997, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31358873

ABSTRACT

Large bioacoustic archives of wild animals are an important source to identify reappearing communication patterns, which can then be related to recurring behavioral patterns to advance the current understanding of intra-specific communication of non-human animals. A main challenge remains that most large-scale bioacoustic archives contain only a small percentage of animal vocalizations and a large amount of environmental noise, which makes it extremely difficult to manually retrieve sufficient vocalizations for further analysis - particularly important for species with advanced social systems and complex vocalizations. In this study deep neural networks were trained on 11,509 killer whale (Orcinus orca) signals and 34,848 noise segments. The resulting toolkit ORCA-SPOT was tested on a large-scale bioacoustic repository - the Orchive - comprising roughly 19,000 hours of killer whale underwater recordings. An automated segmentation of the entire Orchive recordings (about 2.2 years) took approximately 8 days. It achieved a time-based precision or positive-predictive-value (PPV) of 93.2% and an area-under-the-curve (AUC) of 0.9523. This approach enables an automated annotation procedure of large bioacoustics databases to extract killer whale sounds, which are essential for subsequent identification of significant communication patterns. The code will be publicly available in October 2019 to support the application of deep learning to bioaoucstic research. ORCA-SPOT can be adapted to other animal species.


Subject(s)
Vocalization, Animal , Whale, Killer/physiology , Acoustics , Animals , Deep Learning , Female , Male , Neural Networks, Computer , Sound , Sound Spectrography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...