Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 136(6): 3018, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25480051

ABSTRACT

Cavitation-based histotripsy uses high-intensity focused ultrasound at low duty factor to create bubble clouds inside tissue to liquefy a region, and provides better fidelity to planned lesion coordinates and the ability to perform real-time monitoring. The goal of this study was to identify the most important mechanical properties for predicting lesion dimensions, among these three: Young's modulus, bending strength, and fracture toughness. Lesions were generated inside tissue-mimicking agar, and correlations were examined between the mechanical properties and the lesion dimensions, quantified by lesion volume and by the width and length of the equivalent bubble cluster. Histotripsy was applied to agar samples with varied properties. A cuboid of 4.5 mm width (lateral to focal plane) and 6 mm depth (along beam axis) was scanned in a raster pattern with respective step sizes of 0.75 and 3 mm. The exposure at each treatment location was either 15, 30, or 60 s. Results showed that only Young's modulus influenced histotripsy's ablative ability and was significantly correlated with lesion volume and bubble cluster dimensions. The other two properties had negligible effects on lesion formation. Also, exposure time differentially affected the width and depth of the bubble cluster volume.

2.
J Vis Exp ; (83): e51144, 2014 Jan 26.
Article in English | MEDLINE | ID: mdl-24514072

ABSTRACT

The TET (transient electro-thermal) technique is an effective approach developed to measure the thermal diffusivity of solid materials, including conductive, semi-conductive or nonconductive one-dimensional structures. This technique broadens the measurement scope of materials (conductive and nonconductive) and improves the accuracy and stability. If the sample (especially biomaterials, such as human head hair, spider silk, and silkworm silk) is not conductive, it will be coated with a gold layer to make it electronically conductive. The effect of parasitic conduction and radiative losses on the thermal diffusivity can be subtracted during data processing. Then the real thermal conductivity can be calculated with the given value of volume-based specific heat (ρcp), which can be obtained from calibration, noncontact photo-thermal technique or measuring the density and specific heat separately. In this work, human head hair samples are used to show how to set up the experiment, process the experimental data, and subtract the effect of parasitic conduction and radiative losses.


Subject(s)
Hair/chemistry , Thermal Conductivity , Hot Temperature , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...