Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Opt Lett ; 48(2): 215-218, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36638421

ABSTRACT

Perturbations to the effective refractive index from nanometer-scale fabrication variations in waveguide geometry plague high index-contrast photonic platforms; this includes the ubiquitous sub-micron silicon-on-insulator (SOI) process. Such variations are particularly troublesome for phase-sensitive devices, such as interferometers and resonators, which exhibit drastic changes in performance as a result of these fabrication-induced phase errors. In this Letter, we propose and experimentally demonstrate a design methodology for dramatically reducing device sensitivity to silicon width variations. We apply this methodology to a highly phase-sensitive device, the ring-assisted Mach-Zehnder interferometer (RAMZI), and show comparable performance and footprint to state-of-the-art devices, while substantially reducing stochastic phase errors from etch variations. This decrease in sensitivity is directly realized as energy savings by significantly reducing the required corrective thermal tuning power, providing a promising path toward ultra-energy-efficient large-scale silicon photonic circuits.

2.
Opt Lett ; 45(10): 2696-2699, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32412444

ABSTRACT

We introduce a novel design of a space-and-wavelength selective switch based on microring-assisted Mach-Zehnder interferometers. Multiple pairs of overcoupled microring resonators are incorporated as efficient and narrowband phase shifters and are driven in push-pull scheme. We design and demonstrate a 2×2×2λ elementary switch block with full spatial and spectral switching capabilities. The switching device's cross talk suppression and extinction ratio both exceed 21 dB. We measure over 75 GHz optical bandwidth per channel and less than 1.5 dB power penalty at 10-9 BER when two 32 Gbps on-off keying signals are loaded simultaneously. This new class of switching elements can further enable compact and high-performance space-and-wavelength selective switch fabrics without the need for wavelength (de)multiplexers or parallel switching planes.

3.
Opt Express ; 27(14): 19426-19435, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31503702

ABSTRACT

Optical transmitters typically require electrical pre-amplification using driver amplifiers to optimize the optical modulation depth. To enhance the detection sensitivity and optimize the overall link budget, equalization is required to compensate for undesired signal distortion induced by the transmitter. In this paper, we propose and demonstrate a novel optical equalization scheme using a silicon photonic micro-ring resonator (MRR)-based switching circuit for mitigating driver-amplifier-induced pulsewidth distortion. The switching circuit simultaneously functions as a spatial optical switch as well as a two-stage optical bandpass filter for optical equalization. The experimental results indicate a 4.5-dB detection sensitivity enhancement at a data rate of 12.5 Gbits/s. The proposed approach is robust to different levels of pulsewidth distortion without additional signal processing, and has possibilities to support higher data rates by adjusting the MRR parameters.

4.
Opt Express ; 26(12): 16022-16043, 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-30114852

ABSTRACT

Photonic switches are increasingly considered for insertion in high performance datacenter architectures to meet the growing performance demands of interconnection networks. We provide an overview of photonic switching technologies and develop an evaluation methodology for assessing their potential impact on datacenter performance. We begin with a review of three categories of optical switches, namely, free-space switches, III-V integrated switches and silicon integrated switches. The state-of-the-art of MEMS, LCOS, SOA, MZI and MRR switching technologies are covered, together with insights on their performance limitations and scalability considerations. The performance metrics that are required for optical switches to truly emerge in datacenters are discussed and summarized, with special focus on the switching time, cost, power consumption, scalability and optical power penalty. Furthermore, the Pareto front of the switch metric space is analyzed. Finally, we propose a hybrid integrated switch fabric design using the III-V/Si wafer bonding technique and investigate its potential impact on realizing reduced cost and power penalty.

5.
Opt Lett ; 43(16): 4061-4064, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30106952

ABSTRACT

We demonstrate a novel differential phase-shift-keying (DPSK) demodulator based on coherent perfect absorption (CPA). Our DPSK demodulator chip device, which incorporates a silicon ring resonator, two bus waveguide inputs, and monolithically integrated detectors, operates passively at a bit rate of 10 Gbps at telecommunication wavelengths, and fits within a mm-scale footprint. Critical coupling is used to achieve efficient CPA by tuning the gap between the ring and bus waveguides. The device has a vertical eye opening of 12.47 mV and a quality factor exceeding 3×104. The fundamental principle behind this photonic circuit can be extended to other formats of integrated demodulators.

6.
Opt Express ; 26(7): 7920-7933, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29715766

ABSTRACT

We demonstrate a III-V/silicon hybrid external cavity laser with a tuning range larger than 60 nm at the C-band on a silicon-on-insulator platform. A III-V semiconductor gain chip is hybridized into the silicon chip by edge-coupling the silicon chip through a Si3N4 spot size converter. The demonstrated packaging method requires only passive alignment and is thus suitable for high-volume production. The laser has a largest output power of 11 mW with a maximum wall-plug efficiency of 4.2%, tunability of 60 nm (more than covering the C-band), and a side-mode suppression ratio of 55 dB (>46 dB across the C-band). The lowest measured linewidth is 37 kHz (<80 kHz across the C-band), which is the narrowest linewidth using a silicon-based external cavity. In addition, we successfully demonstrate all silicon-photonics-based transmission of 34 Gbaud (272 Gb/s) dual-polarization 16-QAM using our integrated laser and silicon photonic coherent transceiver. The results show no additional penalty compared to commercially available narrow linewidth tunable lasers. To the best of our knowledge, this is the first experimental demonstration of a complete silicon photonic based coherent link. This is also the first experimental demonstration of >250 Gb/s coherent optical transmission using a silicon micro-ring-based tunable laser.

7.
Opt Express ; 26(8): 10914-10929, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29716021

ABSTRACT

Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. We present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly network testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 µs control plane latency for data-center and high performance computing platforms.

8.
Opt Express ; 26(25): 32662-32674, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30645429

ABSTRACT

We leverage the photo-conductance (PC) effect in doped phase-shifter heaters for both controlling and calibrating Mach-Zehnder interferometer (MZI) switch elements. Both the steady-state and the transient response are experimentally characterized, and compact models for the PC current are developed. Utilizing the PC effect, a topology-agnostic algorithm is then outlined. The calibration procedure is experimentally verified against calibration with external photo-detectors using a non-blocking 4×4 Benes switch consisting of six 2×2 MZIs. It is shown that our PC-based approach agrees with the PD-based procedure within less than 2.5% of difference between the obtained calibrated values. Based on the calibrated PC values, all possible routing configurations are measured for extinction ratio (9.92-21.51dB), insertion loss (0.88-4.59dB), and exhibiting performances far below the 7% FEC limit (bit error rate of 3.8 × 10- 3) using 25 Gbps 4-level pulse-amplitude-modulation signals (PAM4).

9.
Opt Express ; 25(1): 232-242, 2017 Jan 09.
Article in English | MEDLINE | ID: mdl-28085816

ABSTRACT

We demonstrate a programmable control-plane based on field programmable gate array (FPGA) with a power-efficient algorithm for optical unicast, multicast, and broadcast functionalities in a silicon photonic platform. The platform includes a silicon photonic 1×8 microring array chip which in conjunction with a fast tunable laser over the C-band is capable of delivering software controlled wavelength selective functionality on top of spatial switching. We characterize the thermo-optic response of microring resonators and extract key parameters necessary for the development of the control-plane. The performance of the proposed architecture is tested with 10 Gb/s on-off keying (OOK) optical data and error-free operation is verified for various wavelength and spatial switching scenarios. Lastly, we evaluate electrical power and energy consumption required to reconfigure the silicon photonic device for all possible wavelength operations and output ports combinations and show that unicast, multicast of two, three, four, five, six, seven, and broadcast functions are achieved with energy overheads of 0.02, 0.07, 0.18, 0.49, 0.76, 1.01, 1.3, and 1.55 pJ/bit, respectively.

10.
Opt Express ; 25(3): 2245-2258, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-29519073

ABSTRACT

Dynamic optical networking has promising potential to support the rapidly changing traffic demands in metro and long-haul networks. However, the improvement in dynamicity is hindered by wavelength-dependent power excursions in gain-controlled erbium doped fiber amplifiers (EDFA) when channels change rapidly. We introduce a general approach that leverages machine learning (ML) to characterize and mitigate the power excursions of EDFA systems with different equipment and scales. An ML engine is developed and experimentally validated to show accurate predictions of the power dynamics in cascaded EDFAs. Recommended channel provisioning based on the ML predictions achieves within 1% error of the lowest possible power excursion over 94% of the time. We also showcase significant mitigation of EDFA power excursions in super-channel provisioning when compared to the first-fit wavelength assignment algorithm.

11.
Microsyst Nanoeng ; 3: 16071, 2017.
Article in English | MEDLINE | ID: mdl-31057846

ABSTRACT

Integrated photonics offers the possibility of compact, low energy, bandwidth-dense interconnects for large port count spatial optical switches, facilitating flexible and energy efficient data movement in future data communications systems. To achieve widespread adoption, intimate integration with electronics has to be possible, requiring switch design using standard microelectronic foundry processes and available devices. We report on the feasibility of a switch fabric comprised of ubiquitous silicon photonic building blocks, opening the possibility to combine technologies, and materials towards a new path for switch fabric design. Rather than focus on integrating all devices on a single silicon chip die to achieve large port count optical switching, this work shifts the focus towards innovative packaging and integration schemes. In this work, we demonstrate 1×8 and 8×1 microring-based silicon photonic switch building blocks with software control, providing the feasibility of a full 8×8 architecture composed of silicon photonic building blocks. The proposed switch is fully non-blocking, has path-independent insertion loss, low crosstalk, and is straightforward to control. We further analyze this architecture and compare it with other common switching architectures for varying underlying technologies and radices, showing that the proposed architecture favorably scales to very large port counts when considering both crosstalk and architectural footprint. Separating a switch fabric into functional building blocks via multiple photonic integrated circuits offers the advantage of piece-wise manufacturing, packaging, and assembly, potentially reducing the number of optical I/O and electrical contacts on a single die.

12.
Opt Express ; 24(11): 12310-20, 2016 May 30.
Article in English | MEDLINE | ID: mdl-27410146

ABSTRACT

The emergence of cloud computing and big data has rapidly increased the deployment of small and mid-sized data centers. Enterprises and cloud providers require an agile network among these data centers to empower application reliability and flexible scalability. We present a software-defined inter data center network to enable on-demand scale out of data centers on a metro-scale optical network. The architecture consists of a combined space/wavelength switching platform and a Software-Defined Networking (SDN) control plane equipped with a wavelength and routing assignment module. It enables establishing transparent and bandwidth-selective connections from L2/L3 switches, on-demand. The architecture is evaluated in a testbed consisting of 3 data centers, 5-25 km apart. We successfully demonstrated end-to-end bulk data transfer and Virtual Machine (VM) migrations across data centers with less than 100 ms connection setup time and close to full link capacity utilization.

13.
Opt Lett ; 41(11): 2537-40, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27244408

ABSTRACT

We present the first experimental demonstration of coherent perfect absorption (CPA) in an integrated device using a silicon racetrack resonator at telecommunication wavelengths. Absorption in the racetrack is achieved by Si+-ion-implantation, allowing for phase controllable amplitude modulation at the resonant wavelength. The device is measured to have an extinction of 24.5 dB and a quality-factor exceeding 3000. Our results will enable integrated CPA devices for data modulation and detection.

14.
Opt Express ; 24(3): 2749-64, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26906845

ABSTRACT

Analysis of the energy use for optical grooming of quadrature amplitude modulated signals in optical transmission systems is used to determine the potential efficiency benefits. An energy model is developed for both optical and electronic grooming and used to study the relative efficiency for three different network scenarios. The energy efficiency is evaluated considering both coherent and direct detection transceivers including power management strategies. Results indicate efficiency improvements up to an order of magnitude may be possible for 100 GBaud rates and 25-30 GBaud is a critical point at which optical grooming becomes the more efficient approach. These results are further shown to apply for the case of projected efficiency improvements in the underlying device technologies.

15.
Opt Express ; 23(17): 22162-80, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26368190

ABSTRACT

We present the design and experimental evaluation of an Optical Multicast System for Data Center Networks, a hardware-software system architecture that uniquely integrates passive optical splitters in a hybrid network architecture for faster and simpler delivery of multicast traffic flows. An application-driven control plane manages the integrated optical and electronic switched traffic routing in the data plane layer. The control plane includes a resource allocation algorithm to optimally assign optical splitters to the flows. The hardware architecture is built on a hybrid network with both Electronic Packet Switching (EPS) and Optical Circuit Switching (OCS) networks to aggregate Top-of-Rack switches. The OCS is also the connectivity substrate of splitters to the optical network. The optical multicast system implementation requires only commodity optical components. We built a prototype and developed a simulation environment to evaluate the performance of the system for bulk multicasting. Experimental and numerical results show simultaneous delivery of multicast flows to all receivers with steady throughput. Compared to IP multicast that is the electronic counterpart, optical multicast performs with less protocol complexity and reduced energy consumption. Compared to peer-to-peer multicast methods, it achieves at minimum an order of magnitude higher throughput for flows under 250 MB with significantly less connection overheads. Furthermore, for delivering 20 TB of data containing only 15% multicast flows, it reduces the total delivery energy consumption by 50% and improves latency by 55% compared to a data center with a sole non-blocking EPS network.

16.
Opt Express ; 23(13): 16890-902, 2015 Jun 29.
Article in English | MEDLINE | ID: mdl-26191700

ABSTRACT

We report for the first time two typical phase coherence lengths in highly confined silicon waveguides fabricated in a standard CMOS foundry's multi-project-wafer shuttle run in the 220nm silicon-on-insulator wafer with 248nm lithography. By measuring the random phase fluctuations of 800 on-chip silicon Mach-Zehnder interferometers across the wafer, we extracted, with statistical significance, the coherence lengths to be 4.17 ± 0.42 mm and 1.61 ± 0.12 mm for single mode strip waveguide and rib waveguide, respectively. We present a new experimental method to quantify the phase coherence length. The theory model is verified by both our and others' experiments. Coherence length is expected to become one key parameter of the fabrication non-uniformity to guide the design of silicon photonics.

17.
Opt Express ; 23(12): 16052-62, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26193579

ABSTRACT

In integrated photonics, the design goal of a polarization splitter/rotator (PSR) has been separating the TE0 and TM0 modes in a waveguide. This is a natural choice. But in theory, a PSR only needs to project the incoming State Of Polarization (SOP) orthogonally to its output ports, using any orthogonal mode basis set in the fiber. In this article, we introduce a novel PSR design that alternatively takes the linear combination of TE0 and TM0 (TE0 +/- TM0) as orthogonal bases. By contrast, existing approaches exclusively use TE0 and TM0 as their basis set. The design is based on two symmetric and robust structures: a bi-layer taper and a Y-junction, and involves no bends. To prove the concept, we incorporated it into a four-channel polarization insensitive wavelength division multiplexing (PI-WDM) receiver fabricated in a standard CMOS Si photonics process. 40 Gb/s data rate and 0.7 +/- 0.2 dB polarization dependent loss (PDL) is demonstrated on each channel. Lastly, we propose an improved PSR design with 12 µm device length, < 0.1 dB PDL, < 0.4 dB insertion loss and < 0.05 dB wavelength dependence across C-band for both polarizations. Overall, our PSR design concept is simple, easy to realize and presents a new perspective for future PSR designs.

18.
Opt Lett ; 40(9): 2012-5, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25927771

ABSTRACT

We experimentally studied the performance of a delay-line interferometer-based optical signal-to-noise ratio (OSNR) monitor that is pre-calibrated in optimal conditions for 25-Gbaud pol-muxed quadrature-amplitude-modulation (QAM) signals, when unpredicted changes outside the monitor occurred either in the transmitter or the link.

19.
Opt Express ; 23(2): 1159-75, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25835876

ABSTRACT

With the rapidly increasing aggregate bandwidth requirements of data centers there is a growing interest in the insertion of optically interconnected networks with high-radix transparent optical switch fabrics. Silicon photonics is a particularly promising and applicable technology due to its small footprint, CMOS compatibility, high bandwidth density, and the potential for nanosecond scale dynamic connectivity. In this paper we analyze the feasibility of building silicon photonic microring based switch fabrics for data center scale optical interconnection networks. We evaluate the scalability of a microring based switch fabric for WDM signals. Critical parameters including crosstalk, insertion loss and switching speed are analyzed, and their sensitivity with respect to device parameters is examined. We show that optimization of physical layer parameters can reduce crosstalk and increase switch fabric scalability. Our analysis indicates that with current state-of-the-art devices, a high radix 128 × 128 silicon photonic single chip switch fabric with tolerable power penalty is feasible. The applicability of silicon photonic microrings for data center switching is further supported via review of microring operations and control demonstrations. The challenges and opportunities for this technology platform are discussed.

20.
Opt Express ; 23(4): 4666-71, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25836504

ABSTRACT

We report a hybrid integrated external cavity, multi-wavelength laser for high-capacity data transmission operating near 1310 nm. This is the first demonstration of a single cavity multi-wavelength laser in silicon to our knowledge. The device consists of a quantum dot reflective semiconductor optical amplifier and a silicon-on-insulator chip with a Sagnac loop mirror and microring wavelength filter. We show four major lasing peaks from a single cavity with less than 3 dB power non-uniformity and demonstrate error-free 4 × 10 Gb/s data transmission.

SELECTION OF CITATIONS
SEARCH DETAIL
...