Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosurgery ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934637

ABSTRACT

BACKGROUND AND OBJECTIVES: Loss of speech due to injury or disease is devastating. Here, we report a novel speech neuroprosthesis that artificially articulates building blocks of speech based on high-frequency activity in brain areas never harnessed for a neuroprosthesis before: anterior cingulate and orbitofrontal cortices, and hippocampus. METHODS: A 37-year-old male neurosurgical epilepsy patient with intact speech, implanted with depth electrodes for clinical reasons only, silently controlled the neuroprosthesis almost immediately and in a natural way to voluntarily produce 2 vowel sounds. RESULTS: During the first set of trials, the participant made the neuroprosthesis produce the different vowel sounds artificially with 85% accuracy. In the following trials, performance improved consistently, which may be attributed to neuroplasticity. We show that a neuroprosthesis trained on overt speech data may be controlled silently. CONCLUSION: This may open the way for a novel strategy of neuroprosthesis implantation at earlier disease stages (eg, amyotrophic lateral sclerosis), while speech is intact, for improved training that still allows silent control at later stages. The results demonstrate clinical feasibility of direct decoding of high-frequency activity that includes spiking activity in the aforementioned areas for silent production of phonemes that may serve as a part of a neuroprosthesis for replacing lost speech control pathways.

2.
Epilepsia ; 64(12): 3205-3212, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37823366

ABSTRACT

OBJECTIVE: Lennox-Gastaut syndrome (LGS) is a severe form of epileptic encephalopathy, presenting during the first years of life, and is very resistant to treatment. Once medical therapy has failed, palliative surgeries such as vagus nerve stimulation (VNS) or corpus callosotomy (CC) are considered. Although CC is more effective than VNS as the primary neurosurgical treatment for LGS-associated drop attacks, there are limited data regarding the added value of CC following VNS. This study aimed to assess the effectiveness of CC preceded by VNS. METHODS: This multinational, multicenter retrospective study focuses on LGS children who underwent CC before the age of 18 years, following prior VNS, which failed to achieve satisfactory seizure control. Collected data included epilepsy characteristics, surgical details, epilepsy outcomes, and complications. The primary outcome of this study was a 50% reduction in drop attacks. RESULTS: A total of 127 cases were reviewed (80 males). The median age at epilepsy onset was 6 months (interquartile range [IQR] = 3.12-22.75). The median age at VNS surgery was 7 years (IQR = 4-10), and CC was performed at a median age of 11 years (IQR = 8.76-15). The dominant seizure type was drop attacks (tonic or atonic) in 102 patients. Eighty-six patients underwent a single-stage complete CC, and 41 an anterior callosotomy. Ten patients who did not initially have a complete CC underwent a second surgery for completion of CC due to seizure persistence. Overall, there was at least a 50% reduction in drop attacks and other seizures in 83% and 60%, respectively. Permanent morbidity occurred in 1.5%, with no mortality. SIGNIFICANCE: CC is vital in seizure control in children with LGS in whom VNS has failed. Surgical risks are low. A complete CC has a tendency toward better effectiveness than anterior CC for some seizure types.


Subject(s)
Epilepsy , Lennox Gastaut Syndrome , Vagus Nerve Stimulation , Child , Male , Humans , Infant , Child, Preschool , Adolescent , Lennox Gastaut Syndrome/surgery , Retrospective Studies , Corpus Callosum/surgery , Seizures/therapy , Syncope , Treatment Outcome , Vagus Nerve
3.
Cereb Cortex ; 32(22): 5005-5019, 2022 11 09.
Article in English | MEDLINE | ID: mdl-35169834

ABSTRACT

Despite extensive knowledge of its molecular and cellular effects, how anesthesia affects sensory processing remains poorly understood. In particular, it remains unclear whether anesthesia modestly or robustly degrades activity in primary sensory regions, and whether such changes are linked to anesthesia drug concentration versus behavioral unresponsiveness, which are typically confounded. Here, we used slow gradual intravenous propofol anesthesia induction together with auditory stimulation and intermittent assessment of behavioral responsiveness while recording epidural electroencephalogram, and neuronal spiking activity in primary auditory cortex (PAC) of eight rats. We found that all main components of neuronal activity including spontaneous firing rates, onset response magnitudes, onset response latencies, postonset neuronal silence duration, late-locking to 40 Hz click-trains, and offset responses, gradually changed in a dose-dependent manner with increasing anesthesia levels without showing abrupt shifts around loss of righting reflex or other time-points. Thus, the dominant factor affecting PAC responses is the anesthesia drug concentration rather than any sudden, dichotomous behavioral state changes. Our findings explain a wide array of seemingly conflicting results in the literature that, depending on the precise definition of wakefulness (vigilant vs. drowsy) and anesthesia (light vs. deep/surgical), report a spectrum of effects in primary regions ranging from minimal to dramatic differences.


Subject(s)
Anesthesia , Auditory Cortex , Propofol , Animals , Rats , Propofol/pharmacology , Auditory Cortex/physiology , Acoustic Stimulation , Wakefulness/physiology , Electroencephalography
4.
Sci Adv ; 6(15): eaaz4232, 2020 04.
Article in English | MEDLINE | ID: mdl-32285002

ABSTRACT

A defining feature of sleep is reduced responsiveness to external stimuli, but the mechanisms mediating sensory-evoked arousal remain unclear. We hypothesized that reduced locus coeruleus (LC) norepinephrine (NE) activity during sleep mediates unresponsiveness, and its action promotes sensory-evoked awakenings. We tested this using electrophysiological, behavioral, pharmacological, and optogenetic techniques alongside auditory stimulation in freely behaving rats. We found that systemic reduction in NE signaling lowered probability of sound-evoked awakenings (SEAs). The level of tonic LC activity during sleep anticipated SEAs. Optogenetic LC activation promoted arousal as evident in sleep-wake transitions, EEG desynchronization, and pupil dilation. Minimal LC excitation before sound presentation increased SEA probability. Optogenetic LC silencing using a soma-targeted anion-conducting channelrhodopsin (stGtACR2) suppressed LC spiking and constricted pupils. Brief periods of LC opto-silencing reduced the probability of SEAs. Thus, LC-NE activity determines the likelihood of sensory-evoked awakenings, and its reduction during sleep constitutes a key factor mediating behavioral unresponsiveness.


Subject(s)
Arousal , Locus Coeruleus/physiology , Norepinephrine/metabolism , Sleep , Electrophysiological Phenomena , Neurons/physiology , Optogenetics , Signal Transduction , Sleep Stages , Sound
5.
J Neurosci ; 40(14): 2895-2905, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32071140

ABSTRACT

A fundamental feature of sleep is reduced behavioral responsiveness to external events, but the extent of processing along sensory pathways remains poorly understood. While responses are comparable across wakefulness and sleep in auditory cortex (AC), neuronal activity in downstream regions remains unknown. Here we recorded spiking activity in 435 neuronal clusters evoked by acoustic stimuli in the perirhinal cortex (PRC) and in AC of freely behaving male rats across wakefulness and sleep. Neuronal responses in AC showed modest (∼10%) differences in response gain across vigilance states, replicating previous studies. By contrast, PRC neuronal responses were robustly attenuated by 47% and 36% during NREM sleep and REM sleep, respectively. Beyond the separation according to cortical region, response latency in each neuronal cluster was correlated with the degree of NREM sleep attenuation, such that late (>40 ms) responses in all monitored regions diminished during NREM sleep. The robust attenuation of late responses prevalent in PRC represents a novel neural correlate of sensory disconnection during sleep, opening new avenues for investigating the mediating mechanisms.SIGNIFICANCE STATEMENT Reduced behavioral responsiveness to sensory stimulation is at the core of sleep's definition, but it is still unclear how the sleeping brain responds differently to sensory stimuli. In the current study, we recorded neuronal spiking responses to sounds along the cortical processing hierarchy of rats during wakefulness and natural sleep. Responses in auditory cortex only showed modest changes during sleep, whereas sleep robustly attenuated the responses of neurons in high-level perirhinal cortex. We also found that, during NREM sleep, the response latency predicts the degree of sleep attenuation in individual neurons above and beyond their anatomical location. These results provide anatomical and temporal signatures of sensory disconnection during sleep and pave the way to understanding the underlying mechanisms.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Neurons/physiology , Perirhinal Cortex/physiology , Sleep/physiology , Acoustic Stimulation , Animals , Male , Rats , Wakefulness/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...