Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Gerontology ; 66(1): 15-23, 2020.
Article in English | MEDLINE | ID: mdl-31266038

ABSTRACT

BACKGROUND: Associations between lower limb muscle strength and balance performance in adults have previously been reported. However, the function of the foot muscles for postural control has not been understood, yet. OBJECTIVE: The purpose of the present study was to investigate associations between pronator and supinator muscle strength, subtalar range of motion (ROM) and postural stability while standing under various conditions in young versus old adults. METHODS: Using a custom-built apparatus equipped with a force transducer and an electrogoniometer, maximum voluntary isometric subtalar pronator and supinator strength as well as ROM tests were administered to 30 young (mean age: 25.1 years) and 30 old (mean age: 65.2 years) volunteers. Total active subtalar ROM, peak pronator and peak supinator torques were measured. While standing on a force plate, limits of stability (LOS) were determined during anterior-posterior (AP) and medio-lateral (ML) leaning tasks. Furthermore, sway distance and velocity during single-legged standing were measured. Correlation and regression analyses were conducted. RESULTS: In both age groups, subtalar pronator muscle strength was related to AP-LOS (young: r = 0.36; old: r = 0.49). In young adults, subtalar supinator muscle strength was associated with ML-LOS (r = 0.41). The regression analyses revealed that summed subtalar muscle strength predicts 13 and 20% of the variance of AP-LOS in young and old adults, respectively. Summed subtalar muscle strength was found to predict 18% of the variance in ML-LOS in young but not in old adults. There were no correlations and no predictors found concerning subtalar muscle strength and postural sway during single-legged standing for both age groups. CONCLUSIONS: Longitudinal studies have to proof whether pronator muscle strength training might positively affect balance performance during AP leaning, specifically in old adults.


Subject(s)
Subtalar Joint/physiology , Adult , Aged , Female , Humans , Lower Extremity/physiology , Male , Middle Aged , Muscle Strength , Muscle, Skeletal/physiology , Postural Balance/physiology , Range of Motion, Articular/physiology
3.
Atmos Chem Phys ; 16(15): 9847-9862, 2016.
Article in English | MEDLINE | ID: mdl-29250104

ABSTRACT

Ambient air pollution from ground-level ozone and fine particulate matter (PM2.5) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of chemistry-climate models simulated future concentrations of ozone and PM2.5 at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM2.5 relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM2.5 in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths/year), likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from 382,000 (121,000 to 728,000) deaths/year in 2000 to between 1.09 and 2.36 million deaths/year in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. PM2.5 concentrations decrease relative to 2000 in all scenarios, due to projected reductions in emissions, and are associated with avoided premature mortality, particularly in 2100: between -2.39 and -1.31 million deaths/year for the four RCPs. The global mortality burden of PM2.5 is estimated to decrease from 1.70 (1.30 to 2.10) million deaths/year in 2000 to between 0.95 and 1.55 million deaths/year in 2100 for the four RCPs, due to the combined effect of decreases in PM2.5 concentrations and changes in population and baseline mortality rates. Trends in future air pollution-related mortality vary regionally across scenarios, reflecting assumptions for economic growth and air pollution control specific to each RCP and region. Mortality estimates differ among chemistry-climate models due to differences in simulated pollutant concentrations, which is the greatest contributor to overall mortality uncertainty for most cases assessed here, supporting the use of model ensembles to characterize uncertainty. Increases in exposed population and baseline mortality rates of respiratory diseases magnify the impact on premature mortality of changes in future air pollutant concentrations and explain why the future global mortality burden of air pollution can exceed the current burden, even where air pollutant concentrations decrease.

4.
J Foot Ankle Res ; 8: 64, 2015.
Article in English | MEDLINE | ID: mdl-26609327

ABSTRACT

BACKGROUND: The angle-dependent torque capacity of the subtalar pronators and supinators is important to maintain dynamic ankle stabilisation. Based on the peak torques during maximum voluntary isometric pronation and supination across the subtalar range of motion, the strength curves of younger and elderly males and females were investigated. METHODS: Maximum voluntary isometric subtalar pronator and supinator strength tests were administered to 30 younger and 30 elderly volunteers (each 15 male and 15 female subjects). Total active subtalar range of motion and peak pronator and supinator torques were measured in five anatomical subtalar joint angles using a custom-built apparatus with two force transducers. Furthermore, relative torques (normalised to the individual peak torque) and pronator-to-supinator strength-ratios were also calculated. RESULTS: Pronator-to-supinator strength ratio, and peak pronator and supinator torques are affected by age and by joint angle x age interactions. All supinator strength curves show a steadily descending characteristic from the pronated to the supinated positions. The pronator strength curve had an inverted U-shaped characteristic, except for younger women of whom 47 % exert highest peak values in the end-range pronation angle. Both relative pronator and supinator strength are dependent on sex (P < 0.05). Relative pronator strength is also affected by joint angle x sex (P < 0.0001) and joint angle x sex x age (P < 0.05) interactions. Beside age effects on all range of motion parameters, pronation range of motion is influenced by a sex x age interaction (P < 0.05). CONCLUSIONS: Age- and sex-related differences in both subtalar strength profile and range of motion have to be considered when testing strength across subtalar range of motion. Younger females have higher pronator strength capacity in the most pronated joint angle, which may be due in part to their greater subtalar joint range of motion compared to the other groups. In the most supinated position both pronator and supinator strength capacity is reduced in younger females compared to younger males.

5.
Article in English | MEDLINE | ID: mdl-22973202

ABSTRACT

Philosophers, psychologists, and neuroscientists have long been interested in how the temporal aspects of perception are represented in the brain. In the present study, we investigated the neural basis of the temporal perception of synchrony/asynchrony for audiovisual speech stimuli using functional magnetic resonance imaging (fMRI). Subjects judged the temporal relation of (a)synchronous audiovisual speech streams, and indicated any changes in their perception of the stimuli over time. Differential hemodynamic responses for synchronous versus asynchronous stimuli were observed in the multisensory superior temporal sulcus complex (mSTS-c) and prefrontal cortex. Within mSTS-c we found adjacent regions expressing an enhanced BOLD-response to the different physical (a)synchrony conditions. These regions were further modulated by the subjects' perceptual state. By calculating the distances between the modulated regions within mSTS-c in single-subjects we demonstrate that the "auditory leading (A(L))" and "visual leading (V(L)) areas" lie closer to "synchrony areas" than to each other. Moreover, analysis of interregional connectivity indicates a stronger functional connection between multisensory prefrontal cortex and mSTS-c during the perception of asynchrony. Taken together, these results therefore suggest the presence of distinct sub-regions within the human STS-c for the maintenance of temporal relations for audiovisual speech stimuli plus differential functional connectivity with prefrontal regions. The respective local activity in mSTS-c is dependent both upon the physical properties of the stimuli presented and upon the subjects' perception of (a)synchrony.

6.
Environ Sci Technol ; 43(17): 6482-7, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19764205

ABSTRACT

Ozone exposure is associated with negative health impacts, including premature mortality. Observations and modeling studies demonstrate that emissions from one continent influence ozone air quality over other continents. We estimate the premature mortalities avoided from surface ozone decreases obtained via combined 20% reductions of anthropogenic nitrogen oxide, nonmethane volatile organic compound, and carbon monoxide emissions in North America (NA), EastAsia (EA), South Asia (SA), and Europe (EU). We use estimates of ozone responses to these emission changes from several atmospheric chemical transportmodels combined with a health impactfunction. Foreign emission reductions contribute approximately 30%, 30%, 20%, and >50% of the mortalities avoided by reducing precursor emissions in all regions together in NA, EA, SA and EU, respectively. Reducing emissions in NA and EU avoids more mortalities outside the source region than within, owing in part to larger populations in foreign regions. Lowering the global methane abundance by 20% reduces mortality mostin SA,followed by EU, EA, and NA. For some source-receptor pairs, there is greater uncertainty in our estimated avoided mortalities associated with the modeled ozone responses to emission changes than with the health impact function parameters.


Subject(s)
Air Pollutants/toxicity , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Mortality/trends , Ozone/toxicity , Air Pollutants/analysis , Asia/epidemiology , Computer Simulation , Europe/epidemiology , Heart Diseases/mortality , Humans , Lung Diseases/mortality , Models, Theoretical , North America/epidemiology , Ozone/analysis , Population Density , Seasons
7.
Brain Res ; 1220: 157-63, 2008 Jul 18.
Article in English | MEDLINE | ID: mdl-18234167

ABSTRACT

We show that concurrent auditory stimuli can enhance the visual system's ability to detect brief visual events. Participants indicated which of two visual stimuli was briefly blinked off. A spatially non-aligned auditory cue - simultaneous with the blink - significantly enhanced subjects' detection ability, while a visual cue decreased detection ability relative to a no-cue condition. Control experiments indicate that the auditory-driven enhancement was not attributable to a warning effect. Also, the enhancement did not depend on an exact temporal alignment of cue-target onsets or offsets. In combination, our results provide evidence that the sound-induced enhancement is not due to a sharpening of visual temporal responses or apparent prolongation of the visual event. Rather, this enhancement seems to reflect an increase in phenomenal visual saliency.


Subject(s)
Blinking/physiology , Reaction Time/physiology , Sound , Visual Perception/physiology , Acoustic Stimulation/methods , Adult , Analysis of Variance , Auditory Perception/physiology , Cues , Female , Humans , Male , Photic Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...