Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Research (Wash D C) ; 7: 0362, 2024.
Article in English | MEDLINE | ID: mdl-38726242

ABSTRACT

Recent work demonstrated stimulated Raman adiabatic passage-type transfer of energy along 3 acoustic cavities. After brief comments on the stimulated Raman adiabatic passage method, remarks on the scientific and technological relevance of this work are presented, followed by noting other recent important applications of the process.

2.
J Chem Phys ; 142(17): 170901, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25956078

ABSTRACT

The first presentation of the STIRAP (stimulated Raman adiabatic passage) technique with proper theoretical foundation and convincing experimental data appeared 25 years ago, in the May 1st, 1990 issue of The Journal of Chemical Physics. By now, the STIRAP concept has been successfully applied in many different fields of physics, chemistry, and beyond. In this article, we comment briefly on the initial motivation of the work, namely, the study of reaction dynamics of vibrationally excited small molecules, and how this initial idea led to the documented success. We proceed by providing a brief discussion of the physics of STIRAP and how the method was developed over the years, before discussing a few examples from the amazingly wide range of applications which STIRAP now enjoys, with the aim to stimulate further use of the concept. Finally, we mention some promising future directions.

3.
J Chem Phys ; 125(1): 014301, 2006 Jul 07.
Article in English | MEDLINE | ID: mdl-16863292

ABSTRACT

We study a method for controlling the flow of excitation through decaying levels in a three-level ladder excitation scheme in Na(2) molecules. Like the stimulated Raman adiabatic passage (STIRAP), this method is based on the control of the evolution of adiabatic states by a suitable delayed interaction of the molecules with two radiation fields. However, unlike STIRAP, which transfers a population between two stable levels g and f via a decaying intermediate level e through the interaction of partially overlapping pulses (usually in a Lambda linkage), here the final level f is not long lived. Therefore, the population reaching level f decays to other levels during the transfer process. Thus, rather than controlling the transfer into level f, we control the flow of the population through this level. In the present implementation a laser P couples a degenerate rovibrational level in the ground electronic state X 1Sigma(g)+, v" = 0, j" = 7 to the intermediate level A 1Sigma(u)+, v' = 10, J' = 8, which in turn is linked to the final level 5 1Sigma(g)+, v = 10, J = 9 by a laser S, from which decay occurs to vibrational levels in the electronic A and X states. As in STIRAP, the maximum excitation flow through level f is observed when the P laser precedes the S laser. We study the influence of the laser parameters and discuss the consequences of the detection geometry on the measured signals. In addition to verifying the control of the flow of population through level f we present a procedure for the quantitative determination of the fraction kappa(f) of molecules initially in the ground level which is driven through the final level f. This calibration method is applicable for any stepwise excitation.

4.
Phys Rev Lett ; 95(4): 043001, 2005 Jul 22.
Article in English | MEDLINE | ID: mdl-16090805

ABSTRACT

A technique for adiabatic control of the population flow through a preselected decaying excited level in a three-level quantum ladder is presented. The population flow through the intermediate or upper level is controlled efficiently and robustly by varying the pulse delay between a pair of partly overlapping coherent laser pulses. The technique is analyzed theoretically and demonstrated in an experiment with Na2 molecules.

5.
Appl Opt ; 43(16): 3241-50, 2004 Jun 01.
Article in English | MEDLINE | ID: mdl-15181803

ABSTRACT

We present a technique to correct interferometry for the material-dependent phase shift that accompanies reflection. Such corrections are needed for nanometer accuracy of surfaces that are not of homogeneous composition. We adapt the general theory of reflection from surfaces in which there are irregular and unresolved areas of several materials to treat the specific case in which only two materials are present, as is the case for many practical applications. We show, for the approximation of a large numerical aperture that collects all reflected light, how measurements of three quantities, together with known values of the optical constants, allow determination of the material-dependent phase shift at each position on the surface. We demonstrate with numerical simulation, appropriate to measuring a surface of alumina in which optically unresolved titanium carbide granules are embedded, that our approach also succeeds, with nanometer accuracy, when the numerical aperture is small. The method is discussed for use with a miniature interferometric phase sensor, but it has application to any interferometer.

6.
Phys Rev Lett ; 91(21): 213001, 2003 Nov 21.
Article in English | MEDLINE | ID: mdl-14683294

ABSTRACT

We demonstrate experimental techniques for creating and measuring a coherent superposition of two degenerate atomic states with equal amplitudes in metastable neon. Starting from state (3)P(0), we create adiabatically a coherent superposition of the magnetic sublevels M=+/-1 of the state (3)P(2) using a tripod stimulated Raman adiabatic passage scheme. The measurement is based on the coupling of the levels (3)P(2)<-->(3)P(1) by a linearly polarized laser, followed by the detection of the population in the (3)P(2)(M=+/-2) states as a function of the polarization angle of that laser.

SELECTION OF CITATIONS
SEARCH DETAIL
...